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ABSTRACT

Hardware performance counters (HPCs) that measure low-level
architectural and microarchitectural events provide dynamic con-
textual information about the state of the system. However, HPC
measurements are error-prone due to non determinism (e.g., un-
dercounting due to event multiplexing, or OS interrupt-handling
behaviors). In this paper, we present BayesPerf, a system for quanti-
fying uncertainty in HPC measurements by using a domain-driven
Bayesian model that captures microarchitectural relationships be-
tween HPCs to jointly infer their values as probability distributions.
We provide the design and implementation of an accelerator that
allows for low-latency and low-power inference of the BayesPerf
model for x86 and ppc64 CPUs. BayesPerf reduces the average er-
ror in HPC measurements from 40.1% to 7.6% when events are being
multiplexed. The value of BayesPerf in real-time decision-making
is illustrated with a simple example of scheduling of PCle transfers.
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1 INTRODUCTION

Hardware performance counters (HPCs) are widely used in profil-
ing applications to characterize and find bottlenecks in application
performance. Even though HPCs can count hundreds of different
types of architectural and microarchitectural events, they are lim-
ited because those events are collected (i.e., multiplexed) on a fixed
number of hardware registers (usually 4-10 per core). As a result,
they are error prone because of application, sampling, and asynchro-
nous collection behaviors borne out of multiplexing. Such behavior
in HPC measurements is not a new problem, and has been known
for the better part of a decade [1, 12, 29, 32, 43, 44, 48].

Targeted Need. Traditional approaches of tackling HPC errors
have relied on collecting measurements across several application
runs, and then performing offline computations to (i) impute miss-
ing or errored measurements with new values (e.g., [43]); or (ii) drop-
ping outlier values to reduce overall error (e.g., [29]). Both of these
require time and compute resources for collecting training data
and inference, thus are suitable for offline analysis (like profiling).
These techniques are untenable in emergent applications that use
HPCs as inputs to complete a feedback loop and make dynamic
real-time decisions that affect system resources using a variety of
machine learning (ML) methods. Examples include online perfor-
mance hotspot identification (e.g., [14]), userspace or runtime-level
scheduling (e.g., [2, 4, 10, 17, 48]), and power and energy manage-
ment (e.g., [13, 36, 37, 40]), as well as attack detectors and system
integrity monitors [8]. In such cases, the HPC measurement errors
propagate, get exaggerated, and can lead to longer training time and
poor decision quality (as illustrated in §6.3). This is not surprising
because ML systems are known to be sensitive to small changes in
their inputs (e.g., in adversarial ML) [9, 18, 24]. As we will show in
§2, HPC measurement errors can be large (as much as 58%); hence
they must be explicitly handled.

This paper presents BayesPerf, a system for quantifying uncer-
tainty and correcting errors in HPC measurements using a domain-
driven Bayesian model that captures micro-architectural relation-
ships between HPCs. BayesPerf corrects HPC measurement errors
at the system (i.e., CPU and OS) level, thereby allowing the down-
stream control and decisions models that use HPCs to be simpler,
faster and use less training data (if used with ML). The proposed
model is based on the insight that even though individual HPC
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measurements might be in error, groups of different HPC measure-
ments that are related to one another can be jointly considered—to
reduce the measurement errors—using the underlying statistical
relationships between the HPC measurements. We derive such re-
lationships by using design and implementation knowledge of the
microarchitectural resources provided by CPU vendors [7, 19]. For
example, the number of LLC misses, the size of DMA transactions,
and the DRAM bandwidth utilization are related quantities,' and
can be used to reduce measurement errors in each other.

Approach & Contributions. The key contributions are:

(1) The BayesPerf ML Model. We present a probabilistic ML model
that incorporates microarchitectural relationships to combine
measurements from several noisy HPCs to infer their true val-
ues, as well as quantify the uncertainty in the inferred value
due to noise. Hence allowing:

(a) improving decision-making with explicit quantification of
HPC measurement uncertainty.

(b) reduced need for aggressive (high-frequency) HPC sampling
(which negatively impacts application performance) to cap-
ture high-fidelity measurements, thereby increasing our ob-
servability into the system.

(2) The BayesPerf Accelerator. To enable the use of BayesPerf ML
model in latency-critical, real-time decision-making tasks, this
paper presents the design and implementation of an accelerator
for Monte Carlo-based training and inference of the BayesPerf
model. The accelerator exploits

(a) high-throughput random-number generators.

(b) maximal parallelism based on the statistical relationships
mentioned above, to rapidly sample multiple parts of the
BayesPerf model in parallel.

(3) A Prototype Implementation. We describe an FPGA-based proto-

type implementation of the BayesPerf system (on a Xilinx Virtex
7 FPGA) for Linux running on Intel x86_64 (Sky Lake) and IBM
ppc64 (Power9) processors. The BayesPerf system is designed
to provide API-compatibility with Linux’s perf subsystem [27],
allowing it to be used by any userspace performance monitor-
ing tool for both x86_64 and ppc64 systems. Our experiments
demonstrated that BayesPerf reduces the average error in HPC
measurements from 40.1% to 7.6% when events are being multi-
plexed, which is an overall 5.28x error reduction. Further, the
BayesPerf accelerator provides an 11.8x reduction in power
consumption, while adding less than 2% read latency overhead
over native HPC sampling.
Increasing training and model efficiency of decision-making tasks.
We demonstrate the generality of the BayesPerf system by inte-
grating it with a high-level ML-based IO scheduler that controls
transfers over a PCle interconnect. We observed that the train-
ing time for the scheduler was reduced by 37% (~52 hr reduction)
and the average makespan of scheduled workloads decreased
by 19%.

The remainder of the paper is organized as follows. First in §2,

we discuss the sources of HPC measurement errors. Then in §3

we provide an overview of the design of the BayesPerf system. §4

describes the formulation, training and inference of the ML model

—
N
z

!In a simple processor, DRAM Bandwidth = (LLC misses x Cache line size+ # DMA
Transactions x Transaction size)/Clocks.
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Figure 1: Errors due to event multiplexing in HPC measure-
ments across ten application runs.

used to correct errors. §5 describes the accelerator that allows
inference on the ML model in real-time. Then in §6 we discuss a
prototype implementation and it’s evaluation. Finally, in §7 and
§8, we put BayesPerf in perspective of traditional methods, and
describe future challenges, respectively.

2 BACKGROUND: HPC ERRORS

Every modern processor has a logical unit called the Performance
Monitoring Unit (PMU), which consists of a set of HPCs. An HPC
counts how many times a certain event occurs during a time interval
of a program’s execution. The number and configurability of the
HPCs vary across processor vendors and microarchitectures. For
example, modern Intel processors have three fixed HPCs (which
measure ISA-related events) and eight programmable HPCs per core
(which measure microarchitectural events and are split between the
SMT threads on the core) [21]. The events measured by an HPC are
vendor-specific and microarchitecture-dependent, and vary with
processor models within the same microarchitecture. For example,
an Intel Haswell CPU has 400 programmable events, compared to
the 1623 events on a HaswellX CPU; both have the same number
of HPC registers per core (three + eight) [48]. Therefore, one must
carefully pick and configure which events to monitor with the
available registers.
Reading HPCs. Performance counters can be read using:

(1) Polling: The HPCs can be read at any instant by using specific
instructions to write (to configure the HPC) and read (to poll the
value of an HPC) model-specific registers (MSRs) that represent
HPCs. For example, x86_64 uses specific instructions to read
(i.e., rdmsr) from and write (i.e., wrmsr) to MSRs, respectively;
both instructions require OS-level access privilege, and hence
are performed by the OS on behalf of a user. Here, one HPC is
programmed to count only one event during the execution of a
program. Hence, polling is ineffective, as the number of events
that can be simultaneously measured is limited by the number
of available hardware registers.

Sampling: HPCs also support sampling of counters based on the
occurrence of events, thereby letting multiple events timeshare
a single HPC [30, 32]. This feature is enabled through a specific
interrupt, called the Performance Monitoring Interrupt (PMI),
which can be generated after the occurrence of a certain number
of events (i.e., a predetermined threshold). The interrupt handler
then polls (i.e., samples) the HPC. The multiplexing of events
occurs through a separate scheduling interrupt that is triggered
periodically to change the configuration of the HPCs and swap
events in and out. The collected measurements are generally
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Figure 2: Overview of the BayesPerf ML model.

scaled to account for the time they were not scheduled to a
HPC [12], and that can lead to making erroneous measurements.
Sampling is necessary due to the severe disparity between the
numbers of events types and the number of counters.

Sources of Errors. In addition to the errors due to event multi-
plexing, HPCs demonstrate other modalities of measurement error.
For example, HPC measurements can vary across runs because of
OS activity, scheduling of programs in multitasking environments,
memory-layout, and memory-pressure, and varied multi-processor
interactions may change between different runs. Nondeterminism
in OS behavior (e.g., servicing of hardware interrupts) also plays
a significant role in HPC measurement errors [44]. Performance
counters have also been shown to over count certain events on
some processors [44]. Finally, the implementation of userspace and
OS-kernel-level tools can cause different tools to provide different
measurements for the same HPCs in strictly controlled environ-
ments for the same application. The variations in measurements
may result from the techniques involved in acquiring them, e.g.,
the point at which they start the counters, the reading technique
(polling or sampling), the measurement level (thread, process, core,
multiple cores), and the noise-filtering approach used.

Measurement Errors. As a result of this non-determinism,
quantifying error in HPCs is difficult as there is no way to get
“ground truth” measurements because of inherent variations in
measurements. In this paper, we define HPC error as magnitude of
difference between corresponding HPC measurements made in two
runs of a workload, one in polling and other in sampling mode. The
correspondence between the two HPC traces (time-series) is estab-
lished by dynamic time warping [5] that calculates an “alignment”
between the two time series datasets using edit-distance.?

Fig. 1 illustrates the net effect of measurement errors on the fi-
delity of an HPC counter using Linux’s perf subsystem. In this case,
the baseline dataset is collected using polling, and the target dataset
is collected using sampling, each on 10 independent application
runs capturing both variations in a single run, and variations across
runs. We observe a 58 + 9.3% average error in HPC measurements
when 35 on-core events are being multiplexed on an Intel processor,
compared to the baseline of polling 4 events at a time.

Errors in Derived Events. Such high error is particularly trou-
bling, as it is quite conceivable to count 35 events simultaneously,

2This definition of error is based on prior work on HPC errors [29].
3The experimental setup is described in detail in §6.1.

834

particularly for measuring derived events. Derived events are ob-
tained by combining individual HPC measurements in a mathemat-
ical expression. Consider for example, the “Backend_Bound_SMT”
derived event on Intel BroadwellX processor. It measures the frac-
tion of pops issue slots utilized in a core, and alone takes mea-
surements from 16 HPCs to compute [7]. This information might
be valuable in a OS-level scheduler that controls an SMT pro-
cessor, with the objective of minimizing interference between
CPU-bound processes/threads. Often such information would be
conflated with other derived metrics like “Memory_Bound” and
“Frontend_Bound_SMT”, which together would require the use of
29 unique counters. That according to Fig. 1 would incur an average
error of ~45%. This is further exasperated by the fact that the HPCs
need to be counted per-SMT thread, per-core, and per-socket. For
example, in an average 2-socket server system this would imply
collecting thousands of counters (i.e., 2784 HPCs = 29 counters x
24 cores x 2 sockets).

Adding More Registers? A relevant question to ask is whether
the HPC-error problem will disappear if more HPC registers are
added into future CPUs. The short answer is that it will not, be-
cause as we continue to add more monitors, the system complexity
increases which is untenable in commercial CPUs that are often
driven by other practical considerations. Hence, HPC counters will
eventually always end up introducing the sampling-based error.

3 APPROACH OVERVIEW

Key Insight. The key insight that drives this work is that microar-
chitectural invariants (e.g. [7, 19, 41]) can be applied to measured
HPC data to estimate whether it is, in fact, in error (i.e., a detector).
Further, we can quantify the “uncertainty” of an HPC measurement
by quantifying the probability of deviation from that invariant (i.e.,
its egregiousness). When the above is applied to a group of HPC
measurements, each targeting different microarchitectural units,
the underlying invariants can be composed, encoded as statistical
relationships, i.e., joint probability distributions, which can then
be composed into larger probabilistic graphical models. We then
use a Bayesian inference approach to integrate the data and prior
knowledge of the system to effectively attenuate the high error
measurements and significantly amplify correct measurements, all
in real-time. This works in practice as the number of HPCs with
lower errors are generally more numerous than those with higher
error (also verified by our observations), hence they bias the ag-
gregate results to the lower errored values. As a result, BayesPerf
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significantly outperforms traditional purely data-driven statistical
approaches for outlier detection.

BayesPerf ML Model. Below, we provide a high-level descrip-
tion of the model, using the example illustrated in Fig. 2. In this
example, the goal is to measure (by multiplexing) a set of events
{ea,.-.» ef}, on a set of HPCs {c1, ¢2,¢3}.

Deciding Schedules of HPCs: BayesPerf first determines a sched-
ule of how the events are multiplexed on the HPCs. The schedule
consists of a set of HPC configurations that are collected over time.
We define an HPC configuration as a mapping between counters
and events, that defines which counters are collected at an instant
of time. The notation {c1, c2, c3} = {eq, €p, ec} is used to define such
a configuration, and imply that ¢; counts e,. The scheduling pro-
cess is driven primarily by the microarchitectural considerations
of the available HPCs and the types of events that each one can
measure, i.e., as not all HPCs can measure all events. Traditional
HPC measurement tools, like the Linux perf subsystem trigger
HPC configuration changes in a round-robin manner, based on a
periodic hardware timer-driven interrupt (see Fig. 2). BayesPerf
uses a similar interrupt driven approach, but does not use round-
robin to build a schedule of configurations. It creates configurations
of overlapping counters, such that each set of counters have “statistical
relationships” to other events in preceding and subsequently scheduled
configurations. For example, in Fig. 2, e, and e, are such overlap-
ping events. As we will show in §4, these “statistical relationships”
can be derived based on microarchitectural invariants (i.e., domain
knowledge) that tie together the resources underlying the measure-
ments. BayesPerf encodes those invariants as generative joint- and
conditional-probability distributions for the processors used in our
experiments.

Inferring Unscheduled Events: At each instant of time, BayesPerf
then uses sampled data from the overlapping events to compute a
full posterior distribution (i.e., the likely values and their associated
uncertainties) of the unscheduled events using a Bayesian inference
approach. Consider e, in the second time slice of Fig. 2. It is calcu-
lated using its’ own samples from the previous time slice and the
samples of e, (which is the event repeated across time slice one and
two) in the current time slice. The result of the Bayesian inference
using the sampled data is a probability distribution Pr(elt)|e£_1, el)
at time ¢; this distribution not only gives us an estimate of e, (i.e., by
finding the most likely value of e, under the distribution), but also
quantifies uncertainty (i.e., using the probability value Pr(ep|...))
in that estimate. The compositional nature of Bayesian inference
allows chain events across multiple time slices, if the overall set of
events to be measured is large, albeit at the cost of larger uncer-
tainty in the estimate. For example, in Fig. 2 the chain of events
(ep — eq) » (eq — €¢) ~» (€. — eg) can be used directly esti-
mate ep, from samples of e,, but also transitively estimate it from
samples of e.. Here “—” describes the above statistical relationships
between events in a configuration (i.e., in a single time slice), and
“w>” describes data collected between overlapping events across
time slices.

The BayesPerf system then allows an user to poll the posterior
probability distributions of any of the events being collected. These
distributions can be passed along (i.e., integrated) into higher-level

835

Subho S. Banerjee, Saurabh Jha, Zbigniew Kalbarczyk, and Ravishankar K. lyer

wn 32768

9

S 16384

v]

= 8192

g

® 4096

<

S 2048

3 1024

o \;\0\5* OQN\C \(/\)\)\ < \P\d’\ w\-\ve‘

2 o pe et R
we o es o o

Figure 3: Latency overhead of reading counters with
BayesPerf compared to traditional methods on an x86 CPU.

ML/control frameworks or used directly to compute error bounds
of HPC measurements.

BayesPerf Accelerator. Though the BayesPerf ML model is
able to provide significantly higher-quality samples from the raw
HPC measurements, it introduces the additional runtime over-
head of performing Bayesian inference on every new measurement
polled by the user. Consider Fig. 3; it shows the average overhead
(over 100 reads) of reading a HPC value using the Linux kernel’s
(perf subsystem) read() system call (i.e., polling), the x86_64 rdpmc
instruction to read HPCs in userspace, a purely CPU implemen-
tation of the BayesPerf ML model (using TensorFlow Probabil-
ity [11, 42]), an FPGA accelerated version of BayesPerf (described
later in §5), and CounterMiner[29] (described later in §6 and used
as a baseline in our evaluation). We observe that a single HPC
read when the CPU implementation of BayesPerf is being used has
approximately 9x longer latency than native polling of the HPC.
In order to reduce the latency, we introduce an accelerator that
parallelizes the process of computing posterior inference on the
BayesPerf ML model. The accelerator largely builds upon our prior
work [3] in building MCMC accelerators that treats a lack of statisti-
cal dependencies between variables as a scope for parallel execution.
Using the accelerator, BayesPerf adds less than 2% overhead in read
latency compared to the native solution. Our implementation of the
accelerator on a PCle-attached FPGA device can take advantage
of modern cache-coherent accelerator-processor communication
protocols like CAPI [39], and essentially provide users with the
same interface and same performance characteristics they could
get if they were natively polling the OS for HPC measurements.

4 THE BAYESPERF ML MODEL

In this section we first discuss formalization of the HPCs and events
for a generic CPU. Then, in §4.1, we discuss the problem of sched-
uling sets of performance counters onto available HPCs. Finally,
in §4.3, we discuss an inference strategy to compute the posterior
distribution of a single event based on generated schedule and HPC
measurement samples.

Formalism. We assume that every processor has a pre-
determined number of fixed and programmable HPCs. We refer
to them as ny and ny, respectively. The HPCs themselves are in-
dexed and referred to as f] .. .fnf for the fixed HPCs and c; . . . Cn,,
for the programmable HPCs. The processor as a whole has a set
E ={e1,...,en,} of ne architectural and microarchitectural events
that are measured using f. and c.. At any point in time, the pro-
grammable HPCs are configured to count any one of the events in E.
The instantaneous mapping between counters and events is called
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a configuration. Fixed HPCs are not considered in a configuration,
as they cannot be programmed. Not all programmable HPCs will
be able to count all events (i.e., all configurations might not be
valid), depending on microarchitectural and implementation con-
siderations. For example, an Intel off-core response event requires
one HPC and one MSR register, and the L1D_PEND_MISS.PENDING
event can be only counted on the third HPC on Haswell/Broadwell
systems. Configuration validity constraints are known ahead of
time, can be dynamically checked, and must always be satisfied.
BayesPerf uses the Linux’s builtin validity checker.

A sample s; is generated from an HPC ¢; (i.e., an interrupt is
fired to read the value of a counter and store it in memory) when a
particular threshold 7; . is reached on one of the fixed HPCs filt
That process is denoted by s; ~ ¢; if fi > 7;. In addition to the
value of the counter, the sampling process also records two time
measurements, ¢! and t, where t. < t!. They correspond to the
total time the application has been running, and the total time
for which an event has been sampled (i.e., it has been enabled),
respectively. Traditional approaches (e.g., one that is used in Linux)
use these times to correct HPC undercounting errors and assume
that the true value of a performance counter is scaled according to
sj > 8j X L[t

Statistical Dependencies. Some subsets of events in E have
statistical relationships between them. Those statistical relation-
ships are described by joint probability distribution functions. For
example, if e; and ez share such a relationship, then it is represented
by their joint probability distribution Pr(es, e2; ©). Where, © refers
to all tunable or learnable parameters of the distribution.

We assert that if nothing is known about the statistical re-
lationships between the events, then Pr(e;,...) can be approxi-
mated by a neural network and trained using data from HPCs.
However, for most real systems, knowledge about the underly-
ing microarchitectural resources being counted in a HPC can be
correlated together to describe Pr(e;, . ..). To do so, we use alge-
braic models of the composition of HPC measurements by us-
ing information about the CPU microarchitecture found in pro-
cessor performance manuals [7, 19, 45]. For example, in an In-
tel x86 Sandy Bridge microarchitecture [23, 45], the fraction of
cycles a CPU is stalled because of DRAM access is given by
(1 —Mem_L3_Hit_Frac) x STALLS_L2_PENDING/cLkS. Those stalls can
be caused by either DRAM bandwidth issues or DRAM latency is-
sues, which in turn can be measured as ORO_DRD_BW_Cycles/cLKS, and
ORO_DRD_Any_CycleS/CLKS — ORO_DRD_BW_CyCleS/CLKS respectively‘ Here,
ORO_DRD_Any_Cycles, ORO_DRD_BW_Cycles, Mem_L3_Hit_Frac,
STALLS_L2_PENDING, and CLKS correspond to a set of fixed and
programmable events, which are related to each other via the al-
gebraic relations described above. Given the equivalence of those
three computed quantities, we can compute one, given values of the
other. When some of these events are reported with measurement
errors, the equivalence relationship becomes statistical (i.e., cap-
ture randomness because of errors). We then define a distribution
function for individual events, where only valid combinations of
the event values have a non zero probability of occurrence.

“In general, this triggering event occurs based on the number of clock cycles or number
of instructions executed.
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4.1 Scheduling

Problem. Given statistical dependencies between events, we need
to ensure that the configurations created for two consecutive time
slices (i.e., scheduler quanta) have at least one overlapping event
in order to establish either a first-order or a transitive statistical
relationship between consecutive time slices. For example, if we
have four events e; to e4 that are related by f(eq, e2) and g(ez, e3, e4),
we must ensure that samples of e, occur repeatedly across multiple
time slices. Given (from a profiling application) an original schedule
of configurations C; — Cy — - -+ — Cp,, where C; executes in time
slice i, into another schedule of C l’ s such that transitive statistical

relationships hold, such that the validity criteria holds on each C;.

In the case when it is not possible ensure the validity criteria on

every C/, we break the chain of repeated events, and start over

again from a valid configuration.

Solution. The first step of the scheduling process is to aggre-
gate all the statistical dependencies available for the processor in
question into a graphical structure. The graph is produced by ex-
panding the scheduled chain C; — --- — Cp, using the statistical
relationships between the events in the chain. In the ML/statistics
community, such a graph commonly referred to as probabilistic
graphical model, and more specifically identified as a factor graph
(FG) [26]. Remember from above that the statistical dependencies be-
tween the events are specified as joint probability functions Pr(S;),?
where S; C E. Using those functions, we generate a bipartite FG
G = (EU {Pry,...Prp}, {(e,Pri)|le € S;Vi}). The FG represents
the joint distribution of all the events in the schedule, composed
together from every individual joint distribution.

Now, given the FG and two consecutive configurations from a
schedule C; and C41 (with events Ey, Er41 C E respectively), our
scheduling problem reduces to (i) finding whether E; and E;41 share
an event such that the transitive statistical dependency is met; and
(ii) if they do not share such a dependency, producing the shortest
sequence of C}, such that C; — Czl) — -+ — Crq1. Solution of the
first of the two problems is straightforward. We do it by computing
the Markov blanket [26] of the sets E; and E;y+1 under the factor
graph. The Markov blanket By, of a variable x; in the factor graph
defines a subset of x-; such that x; is conditionally independent
of x—; given By;. If the Markov blankets of E; and E;y; overlap
(i.e., Bg, N Bg,,, # @), then we are guaranteed that there exists at
least one event that shares transitive dependencies between the
time slices. The second problem is a little more involved. It can be
solved by finding the shortest path (assuming unit cost for each
edge traversed) from each e € E; to each e’ € E;4; in the FG. That
can be accomplished using Djikstra’s algorithm, checking validity
of the path at every step. In addition to the graph traversal, one
must also apply the following optimizations to prune unnecessary
Cls.

(1) Removing Common Steps: If an intermediate step C; exists such
that the Markov blankets B, Be,, . .. Be,, of events eq, ez,. .. ey
overlap, the next transition state of the schedule can be con-
densed. That is, if there exists an e € Be, N ...Be,, then
composition of statistical relationships can happen through
ex, instead of through the larger set of events, i.e., C{H =
(Cluy \er...en)) Ues

5We use the shorthand Pr; = Pr(S;).
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(2) Removing Redundant Steps: If there exists two steps C; and

C{,; such that there is no change in the Markov blanket (i.e.,
Bg, = BE,,,), then we can skip the transition C;,; and instead
transition to C}, ,. That situation can occur because the Markov
blankets in individual traversals e ~» e’ will change at every
step; however, the union of all such blankets might not change.
If it does not change, we have enough statistical information to
skip the i + 1! step and go directly to i + 2.

Checking Validity of the Configuration. A key challenge in
determining a valid transformation of a schedule is that of identi-
fying the configurations that do not satisfy the microarchitectural
constraints placed on HPCs. We check the validity of a new sched-
ule using Linux’s perf_event subsystem. It allows us to iterate over
all HPCs in a configuration until it reaches an event that it fails to
schedule, thereafter notifying the user of validity failure. To maxi-
mize the use of available counters, the perf iteration strategy starts
with the most constrained events and goes to the least constrained
events in a configuration. Linux’s native scheduling for a group
of events happens independently per PMU and per logical core.
As some PMUs are shared between threads of the same core or
package, their availability may change depending on what events
are being measured on the other cores.

4.2 Modeling Errors in Event Samples

The first step to computing the full posterior distribution is to model
errors in the capture of samples from HPCs. Recall that we listed
sources of such errors in §2. For a single event e programmed in
an HPC ¢, if the error in measurement e; can be modeled, then the
measured/sampled values m. can be modeled in terms of the true
value v, plus measurement noise e, i.e., m¢ = vc + ec. Here, we
focus only on random errors, by assuming zero systematic error.
That is a valid assumption because the only reason for system-
atic errors will be hardware or software bugs. We assume that
the error can be modeled as e, ~ N(0,0) for some unknown
variance o, hence Pr(m; | vc) = N(mc, o) [43]. Now, given N
samples of HPC, we compute their sample mean p and sample vari-
ance S. A scaled and shifted Student’s t-distribution describes the
marginal distribution of the unknown mean of a Gaussian, when
the dependence on variance has been marginalized out [15], i.e.,
Ve ~ pi + S/VN Student(v = N — 1). In all our experiments, the
confidence level of the t-distribution was set to 95%. Now, since the
measurement error model for an HPC is stochastic, when samples
from these models are used in the algebraic relationships described
above, they too become stochastic in nature. The FG becomes one
unified graphical representation of all of these statistical relationships,
i.e., between the errored samples and true values of events, as well
as among different events that measure related aspects of the CPU’s
microarchitecture.

4.3 Inference Strategy

Once we have computed a schedule that ensures that events with
statistical dependencies between them are measured in consecutive
time slices, the next goal is to utilize the measurements to produce a
posterior distribution for an event. Recall Fig. 2. In each scheduling
time slice, we have measurements/samples from the current slice
and the preceding slice. However, because of the transitive statistical
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Algorithm 1 General EP algorithm.

Input: Target distribution f(0) =[] fx (6)

Output: Global approximation g(6) =[] g (0)
1: Choose initial g¢ (6)
2: for k € {0,...K — 1}A until gx converges do
3 g4(0) « 9O)g(0)

&\ (0) o< Pr(y|0)g—x (0)

£V (0) o g, (0)

Agi (0) = 9" (0)/g(6)

&(0) — g(0)Agi (6)

8: end for

9: return {gx(0)|k € [0,K)}

> Cavity distribution
> MCMC
> Local update

> Global update

dependencies, we would like to jointly compute inference for the
FG (i.e., compute the posterior probability of some event in the FG
given the sampled data) for some k time slices into the past.

Our approach to performing this computation with low-latency
guarantees utilizes the idea that one can break the larger problem
into k smaller parts, performing inference on each of the k parts,
and then put the results together to get an approximate posterior
inference, i.e., similar to map-reduce. There are two difficulties with
such algorithms, as they are usually constructed. First, each of the k
pieces has only partial information; as a result, for any of the pieces,
alot of computation is wasted in places that are contradicted by the
other k — 1 pieces. Second, the partial results from the k pieces must
be carefully combined together to ensure that the prior (which is
embedded into the FG model) is not counted multiple times. We use
the Expectation Propagation (EP) algorithm [16, 31, 34] to overcome
those difficulties to perform the inference. The EP algorithm natu-
rally lends itself to distributed inference on partitioned datasets [16].
Hence we can perform inference on partitions of data, i.e., each
scheduled configuration of the HPCs. In contrast, other techniques
for Bayesian inference would require us to explicitly change the
inference algorithm depending on the schedule of HPCs and the
structure of the FG. Such changes might not be feasible for all possi-
ble schedules or all CPU architectures. The EP algorithm works by
computing an effective region of overlap over our k pieces, i.e., for
each piece, we use an approximate prior computed over the other
k — 1 pieces. The outline of the EP algorithm is illustrated in Alg. 1.
The algorithm iteratively approximates a target density f(-) (in our
case the FG) with a density g(-) that admits the same factorization,
and uses a Gaussian mean field approximation [26].

Training. Training is not explicitly required for the proposed
BayesPerf model. The advantage of using Bayesian models like FGs
is that training on such models can be reduced to inference on the
models’ parameters. At runtime, for each time slice, we compute
(infer) a full posterior distribution over the variables (i.e., E) and
parameters (i.e., ©) of the FG, and then use maximum likelihood
estimation to pick the set of parameters (i.e. OMLE)y that can
explain a data trace generated by the system.

5 THE BAYESPERF IMPLEMENTATION

In this section we describe the software and hardware components
in which BayesPerf is deployed. Further, we describe the archi-
tecture and implementation of the BayesPerf accelerator that tar-
gets the execution of Alg. 1. Fig. 4 shows the architecture of the
BayesPerf system, which works as follows.
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Figure 4: High-level architecture of the BayesPerf system.

Setup. BayesPerf is used by one or more “monitoring pro-
cesses/threads” (labeled “Monitoring Application” in Fig. 4) to mon-
itor hardware threads of a “Target Process” The BayesPerf user
API is identical to the the Linux perf subsystem, and hence any
user space program that uses the standard Linux interface can
transparently use BayesPerf. Using this API, the monitoring pro-
cess registers events of interest (labelled as @ in Fig. 4°) with the
userspace component of the BayesPerf system, labelled “BayesPerf
Shim.” The shim represents a userspace driver [25] that replicates
the API of the Linux perf subsystem.

Linux perf. The shim registers HPCs on behalf of the user pro-
cess with the Linux kernel. (labelled as @). The kernel then manages
the scheduling of performance counters onto the CPU (using the
scheduling algorithm described in §4.1). This step is labelled as @.
When the target process raises performance monitoring interrupts
(PMlIs; labelled as @), the Linux perf subsystem is responsible for
reading the corresponding HPC and writing out the sampled value
into a “ring buffer” (labelled as @) that represents a segment of
memory that is mapped into the address space of both the shim and
the perf subsystem. The ring buffer represents a FIFO in which new
samples are enqueued by the kernel and read from the userspace
process. The ring buffer automatically provides a mechanism for
managing backpressure between the shim and kernel as new sam-
ples are dropped if the ring buffer is full.

Interfacing with the Accelerator. As we will discuss in §6.1,
we have prototyped the BayesPerf system on two different architec-
tures: an Intel x86_64 and an IBM Power9 processor. The protocol
for communication between the software and the BayesPerf acceler-
ator (labelled as @; described later) differ for the two architectures.
On the Power9 system, we leverage CAPI 2.0 [39], a protocol that
extends the processor’s cache coherence protocol to PCle-attached
devices. In that case, as the accelerator can directly access the host
memory, it can consume samples enqueued onto the ring buffer by
the kernel (labelled as @). It does so by snooping on cache invalida-
tion messages for the cache lines corresponding to the ring buffer.
Similarly, outputs of the accelerator are directly written back to
the shim’s virtual memory space. For Intel systems, the accelerator

6‘ refers to annotations in Fig. 4 if not otherwise specified.
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uses the base PCle protocol and IOMMU-mediated PCle DMA to
read HPC samples and write the computed posterior distributions.
Here, the shim must actively poll writes from the kernel to the ring
buffer, and once the write has been made, initiate transfer of the
samples to the FPGA. Similarly, the shim polls for interrupts from
the accelerator that signify completion of computation, and initi-
ates DMA transfers for the results. This added software interaction
adds some latency overhead to the entire computation.

Polling Results. Finally, the monitoring application reads
(polls) the results of the posterior computation in BayesPerf (la-
belled as @) from ring buffers in the BayesPerf shim. These reads
are always reads to the host memory of the CPU and do not need
to initiate DMA requests with the accelerator. This design is able
to mask almost all the latency that is added because of the added
computation in BayesPerf (see Fig. 3).

Multi-Threaded Applications. OS-level monitoring contexts,
like processes or threads are dealt with at the level of BayesPerf
shim. Hence, when an OS context switch occurs, the memory refer-
ences of the perf ring buffers are changed by setting configuration
registers on the accelerator using MMIO. When the new references
are written, the accelerator begins pulling data from a different
buffer in memory. As a result, the accelerator can be shared across
threads that are concurrently executing on the host CPU.

The Accelerator. Fig. 5 illustrates the architecture of the
BayesPerf accelerator. The accelerator exploits parallelism in the
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Figure 5: Architecture of the BayesPerf accelerator.
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structure of Alg. 1 in two ways. First, we execute posterior infer-
ence on each of the k time-slices in parallel (recall §4.3). These
parallel execution engines are labeled as “EP 1” through “EP k” and
“Controller” in Fig. 5. The EPs execute lines 3-6 of Alg. 1 in parallel,
and communicate their results to the global controller, which syn-
chronously updates g(0) and dispatches the new value to the idle
EP. The values of the measurements from the HPCs (i.e., inputs) as
well as the latest values of g(0) are stored in the on board DRAM.
Our target FPGA board (which we will describe in §6.1) supports 4
channels of 16GB LPDDR4 memory each. The input data and the
current values of g(0) (which together comprise ~ 100 MB of data)
are replicated across those modules to allow concurrent reads from
different EPs to progress simultaneously.

The second level of parallelism exploited by the model is in the
computation of MCMC inference in each of the EPs. Those are
represented by the “MCMC Sampler” blocks in Fig. 5. They execute
line 4 of Alg. 1 in parallel, by using MCMC to estimate Pr(y|6) (i.e.,
the likelihood that the data y;. is drawn from the local approxima-
tor gy ). Here we leverage our prior work, AcMC?[3], a high-level
synthesis compiler for MCMC applications, to generate IPs that
can generate samples from the target distributions of the HPC mea-
surements. The HPC statistical relationships (i.e., the FG) are fed
into the compiler as a probabilistic program, i.e., a program in a do-
main specific language that can represent statistical dependencies
between program variables. AcMC? then automatically generates
efficient uniform random number generators, and automatically
synthesizes other statistical constraints in FG. Instead of using the
AcMC?-generated controllers for the MCMC samplers, we use the
EPs to directly control the pipelines of MCMC samplers. That is,
(i) to set and update configuration parameters like seed values; and
(ii) to update the state of the sampler with one which passes the
rejection sampling test criteria for each random-walk. Allotment of
the samplers to EPs, and all subsequent communication between
the EPs and samplers, happen over a network-on-chip (NoC) gener-
ated with CONNECT [35]. This approach enables us to use samples
from previous iterations as starting points for Markov-chain ran-
dom walks. This optimization is possible only because we are using
MCMC inside an EP algorithm, instead of by itself [20]. The NoC
uses a butterfly topology to allow communication between EPs
and samplers, as well as between the samplers themselves (as is
required by AcMC?). All our experiments use a 16 port NoC, with 4
of those ports being connected to the EPs, and the remaining 12 to
the MCMC samplers. This is the maximal configuration for which
we were able to meet timing requirements on the FPGA for a 250
MHz clock.

6 EVALUATION & DISCUSSION

This section discusses our experimental evaluation of the BayesPerf
system and is organized as follows. First, in §6.1, we describe the
experimental setup and explore the performance, power, and area
requirements of BayesPerf accelerators when programmed onto an
FPGA. Then, in §6.2 we evaluate the capabilities of the BayesPerf
system in correcting measurement errors in HPCs. Finally, we
demonstrate the integration of BayesPerf with ML-based resource
management systems to improve their outcomes.
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Table 1: Area & power for components of the BayesPerf
FPGA for the x86_64 and ppc64 configurations.

Component Utilization (%) Power (W)
BRAM DSP FF LUT URAM Vivado Measured

x86-PCle 62 78 52 81 58 11.2 17.2

ppc64-CAPI 71 66 49 79 58 10.5 16.1

6.1 Experiment Setup

We evaluate BayesPerf on two system configurations: (i) an IBM
AC922 dual-socket Power9 system (which we will refer to as the
“ppc64” configuration), and (ii) a dual-socket Intel Xeon E5-2695
system (which we will refer to as the “x86” configuration). Both
the systems are populated with two NVIDIA K80 GPUs, a single
FDR Infiniband NIC, and a directly attached FPGA board (which
we describe below). Both systems ran Ubuntu 18.04 with kernel
version v4.15.0.

Accelerator: FPGA. The FPGA accelerator was based on the
architecture in §5. All experiments were performed on an Alpha-
Data ADM-PCIE-9V3 FPGA board (with Xilinx Virtex UltraScale+
VU3P-2 FPGA) clocked at 250 MHz. For the Power9 systems, the
FPGA board was configured to use the CAPI 2.0 interface [39]. For
the x86 configuration, the FPGA board was configured to use PCle3
x16 along with the Xilinx XRT drivers. The power and FPGA utiliza-
tion metrics for the two configurations of the BayesPerf accelerator
are listed in Table 1. In comparison to a 100W TDP of the Intel pro-
cessor and a 190W TDP Power9 processor, the FPGA performs 5.8
and 11.8x better, respectively, in terms of power consumption. The
BayesPerf-ppc64 FPGA read latency is shown in Fig. 3. We observe
that a single HPC read using the CPU implementation of BayesPerf
has approximately 9x longer latency than native polling of the HPC.
However, when the accelerator is being used, BayesPerf adds less
than 2% overhead in read latency compared to the native solution.
Compared to the BayesPerf-ppc64 implementation that uses CAPI,
the BayesPerf-x86 has on average 15.8% larger latency. We can
attribute that slowdown to the requirement that a userspace driver
actively initiates DMA transfers to the FPGA accelerator, whereas
the CAPI configuration snoops for cache invalidation messages.

6.2 Error Reduction Due to BayesPerf

To demonstrate the efficacy of BayesPerf in correcting HPC mea-
surement errors, we employed the 29 workloads from the HiBench
suite [22], which span microbenchmarks, machine learning, SQL,
web search, graph analytics, and streaming applications. They repre-
sent real-world application workloads used in a cloud environment.
We used the two machines in our experiment to simulate a cluster.
Each of the machines hosted 32 workers, and the Spark master
was deployed on the x86 node. We measured 10 derived events for
each of the microarchitectures, where each derived event corre-
sponded to a group of HPCs to be measured and aggregated using
a mathematical relationship. We do not detail the events here for
lack of space. The metadata corresponding to the events for the x86
configuration can be found in the Linux kernel source tree [41] for
both the x86 and ppc64 configurations. In both cases, we measured
all HPCs corresponding to the first 10 metrics.

Baselines. We use three baselines for comparison. First, we
use Linux’s inbuilt correction mechanism that uses enabled time
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and total time (recall from §4) to correct for measurement errors.
This is the most realistic baseline for users who would use the
default configuration available in Linux. Second, we use a variance
reduction technique called CounterMiner [29] (CM), a state of the
art HPC correction technique used in profiling analysis. Note that
CM was originally meant to be used for offline analysis. As we will
show in the remainder of this section, this requirement manifests as
low average correction accuracy, with large variance, when used for
online corrections. Third, we use the online technique by Weaver et.
al. [43] (referred to as “WM+Pin”) for correcting instruction counts
in x86 processors. WM+Pin only corrects the number of instructions
executed and was originally meant to correct core performance
metrics like IPC or CPL Further, it requires intercepting instructions
through Pin [28] to collect opcodes for every dynamic instruction.
This causes performance degradation of up to 198.2x across our
benchmarks.

Error Correction. Fig. 6 shows the significant improvement
in measurement values compared to the baseline. The average
error across all benchmarks dropped from 39.25% and 40.1% for
the “Linux (x86)” and “Linux (ppc64),” respectively, to 8.06% (i.e.,
4.87x=39.25%/8.06%) and 7.6% (i.e., 5.28x=40.1%/7.6%). Similarly, when
“BayesPerf (x86)” and “BayesPerf (ppc64)” are compared to “CM
(x86)” and “CM (ppc64),” the average error dropped by 3.63x
(=29-28%/8.06%) and 3.73x (= 28.31%/7.6%), respectively. Similar im-
provements were observed in the CM configuration. That corre-
sponds to a nearly 40% improvement in the quality of the result of
the ppc64 configuration. The normalized improvement in average
error for each of the benchmark applications when using BayesPerf,
compared to the two baselines is shown Fig. 7. Recall from §3, that
error in measurement is computed as the similarity between two
time series sequences of performance counter samples [5]. In the
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case of the BayesPerf counters, we used a maximum likelihood esti-
mator to provide the most likely value of the performance counter
at a point in time. We normalize the similarity scores using an aver-
age similarity score between two runs of the application, where the
HPCs were measured with polling. That way, we could correct for
any OS-based nondeterminism in the result. Just like in §2, where
the magnitude of the error is a comparison between “polling” mode
and “sampling” under Linux and CM (see Fig. 6).

Scaling. Fig. 8 shows the scaling behavior of the BayesPerf
method with increasing numbers of counters for the “KMeans”
workload in the HiBench suite. We observe that BayesPerf consis-
tently reduced error by as much as 34% as the number of counters
scaled up from 10 to 35 (for Linux). Further, WM+Pin performs
worse than CM as it only corrects instruction counts. This justifies
our choice of using CM as the main baseline for the evaluation.
Interestingly we find that floating point initialization, which is a ma-
jor source of errors in [43], doesn’t result in overcounts, indicating
that the issue is resolved in modern CPUs.

Latency Overhead. Since BayesPerf, performs significantly
more compute than either Linux or the CM configurations, it is

—>é— Linux (x86)

+ CM (x86)

BayesPerf (x86)
WMK + Pin

Linux (ppc64)
CM (ppc64)
—|— BayesPerf (ppc64)

20 25

# of Counters # of Counters
Figure 8: Scaling errors with the number of events sampled.
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expected to be a significantly higher latency. Recall from Fig. 3 that
the difference in latency between BayesPerf (when implemented in
software) and the Linux correction is nearly 9x. The BayesPerf ac-
celerator is designed to mitigate the effects of this increased latency.
Again, from Fig. 3, we see that it successfully does so, reducing the
9x difference to 2%. This is on par with native HPC reads using
rdpmc as well as kernel-assisted HPC reads.

6.3 Case Study: BayesPerf in Feedback Loop

The core value of the BayesPerf approach in terms of it’s error
correction capability has been demonstrated in the previous sec-
tion. Here we demonstrate the downstream value of BayesPerf
to applications that use HPCs as inputs to control system re-
sources. Examples of such applications include online performance
hotspot identification (e.g., [14]), userspace or runtime-level sched-
uling (e.g., [2, 4, 10, 17, 48]), and power and energy management
(e.g., [13, 36, 37, 40]), as well as attack detectors and system integrity
monitors [8]. Further they often use as many as 45 HPCs in the
case of [2, 17, 46].

The Problem. We now look at a situation in which BayesPerf
measurements can be integrated into higher-level decision-making
frameworks to perform resource management decisions. In this
part of the experiment, we used HPC measurements to augment
an Apache Spark Executor [47] that needed to run a distributed
shuffle operation (which is part of the HiBench TeraSort bench-
mark [22]). Fig. 9 illustrates the rich dynamic information that can
be extracted from HPC measurements, and how they can be used in
higher-level controllers. Consider the case of a PCle interconnect
which is populated with NIC and GPU devices. Here, the Spark
executor uses two GPUs to perform a halo exchange (for training a
deep neural network). Fig. 9 shows the performance (in this case,
bandwidth) of the exchange as “isolated” performance. If, at the
same time, the application were to perform a distributed shuffle
(across nodes in a cluster) using the NIC, we would observe that
the original GPU-to-GPU communication is affected because of
PClIe bandwidth contention at shared links. That phenomenon is
shown as “contention” performance in Fig. 9, and it can cause as
much as a 0-1.8x slowdown, depending on the size of the PCle
transactions. Online bandwidth and transaction size monitoring
(which is enabled by HPCs) can be used by a higher-level software
framework to optimally schedule such transfers, so that the perfor-
mance impact of shared resource contention is minimized. While
the example is simple, it illustrates how errors in measurements can
affect the ML algorithm, and hence the overall system performance.

We use two ML-based scheduling algorithms broadly based on
those presented in [10] and in our prior work [2]. The first used
collaborative filtering as the core ML algorithm, and the second used
deep reinforcement learning. The goal of our ML-based scheduler
was to decide which of the two NICs it would use to perform the
shuffle operation, given that the GPUs were communicating with
each other and contending for PCle bandwidth. We simulated the
GPU communication by using Tensorflow to train YoloNet on the
ImageNet dataset.

The Models. The goal of this case study was to show the sen-
sitivity of ML models to errors in their inputs (especially coming
from HPCs). The inputs to the models included: (a) sampled HPC
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measurements corresponding to the numbers of allocating, full, par-
tial, and non-snoop writes, (b) sampled HPC measurements corre-
sponding to demand code reads and partial/ MMIO reads, (c) DRAM
Channel bandwidth utilization, (d) memory-bus bandwidth utiliza-
tion, and (e) the size of data to be shuffled (in or out), and the NUMA
node on which the data would be resident. Note that all of the above
are derived events, computation of which required us to capture
32 unique HPC events. Out of which, 12 were collected for each
physical core (i.e., used 432 HPCs = 12 events x 18 cores x 2 sockets),
and 20 were off-core events being collected per-socket (i.e., used 40
HPCs = 20 events x 2 sockets).

The first model, used collaborative filtering to impute values of
application performance (in this case throughput) with data coming
in from the inputs above, as well as data from training workloads
of the SparkBench suite in HiBench. It is based on the technique
presented in [10]. The second model used a straightforward neural
network: a 4-layer, fully connected ReLU-activated neural network
with 36 neurons in layer 1, 16 neurons in each of layers 2 & 3, and
2 neurons in the last layer. The two neurons in the last layer chose
between the two NICs that were decided between as part of this task.
The model was trained with actor-critic reinforcement learning
based on the approach described in [2]. The loss function used for
training the model minimized the total time taken to complete the
shuffle. The model was trained on the HiBench benchmark suite
without the TeraSort benchmark, and then evaluated using the
TeraSort benchmark. When BayesPerf was used, the MLE estimate
from the posterior distribution of the HPC was passed into the
network. The GPU marked “Training GPU” was used to perform
the collaborative filtering and reinforcement learning as well as
runtime inference on the system. It did not contend for the same
PCle resources as the workloads that was being scheduled GPUs.

Implementation Details: Training. Recall from §4 that the
BayesPerf model in itself does not require training. However, the
two models described above require training. The model from [2]
learns by reinforcement. Hence, it does not have specific training
and testing phases. The net epochs of data used to train the model
are shown in Fig. 10. For the model in [10], which has specific train-
ing and test datasets, we calibrate against bias by using threefold
cross-validation (i.e., across applications in Fig. 6).

Implementation Details: Hyperparameters. The hyperpa-
rameters used in the model are taken directly from [2] and [10].
These parameters include learning rate, LSTM-unroll-length, and
epoch lengths, among others. In addition, we follow the procedure
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Figure 10: Decrease in training time due to BayesPerf.

set out in [10] to determine the optimal value of sparsity. We sweep
over the range between 30% and 80%. All results in this paper uses
the optimal (found from our sweep) value of 75% sparsity.

Results. We compare the results of using the above model with
BayesPerf and without, using two metrics.

Results: Training Time. The collaborative filtering model
does not have an explicit training phase. For the deep learning
model, Fig. 10 illustrates the difference in training time when error-
corrected measurements are used. In the figure, the loss is normal-
ized using the time taken to run the same shuffle operation in a
completely isolated system. We observed a nearly 37% reduction
in the number of iterations before convergence. Each training it-
eration in Fig. 10 takes 63s; therefore, the overall saving of 37%
corresponds to ~52 hr. The reason for the reduction is apparent:
a 40% error in the inputs of the neural network is slowing down
the optimization process. Moreover, we observe that the time to
convergence is effected by (a) the magnitude of error reduction, as
seen by the difference between the Linux-CM (12.5% decrease) and
—BayesPerf (37% decrease) configurations; and (b) the timeliness of
the error reduction, as seen by the difference between the CPU and
accelerated versions of BayesPerf (28.5% decrease).

Results: Decision Quality. We observe that use of the ML-
based scheduler (i.e., that makes Spark PCle aware) leads to a 15.1 +
2.2% and 22.3 + 7.9% improvement in average shuffle completion
time for the two models respectively. Addition of BayesPerf to the
model results in a further 8.7 + 0.9% and 19 + 3.4% reduction in
average shuffle latency, respectively.

7 RELATED WORK

Error Correction in HPCs Measurement errors due to sam-
pling in HPCs have been observed and reported on for the past
decade [1, 12, 29, 32, 43, 44, 48]. Methods for correction of sampled
HPC values can be broadly grouped into two separate approaches.
The first group of methods artificially imputes data in the collected
samples by interpolating between two sampled events using linear
or piece-wise linear interpolation (e.g., [41]). The advantage of such
interpolation methods is that they can be run in real time: however,
they might not provide good imputations [48]. The second group of
methods correct measurements by dropping outlier values, instead
of by adding new interpolated values. Such methods are at the other
extreme: they cannot be run in real time, as they need the entire
trace of an application before providing corrections. For example,
Lv et al. [29] use the Gumbel test for outlier detection, and Neill
et. al. [33] use fork-join aware agglomorative clustering to remove
outlier points. These methods are not suitable for dynamic control
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situations that need online HPC correction. Further, the core statis-
tical technique used by these variance reduction approaches assume
that the underlying distribution of the data remains unchanged,
however, most workload exhibit distinct stages where workload
behavior and thus the underlying distribution of the HPCs will
change.

In contrast to those techniques, BayesPerf corrects measure-
ments by using statistical relationships between events. For well-
documented processors, such relationships can be known ahead of
time, and the entire correction algorithm can be executed without
any need to pre-collect data. The BayesPerf system (with its accel-
erator) allows nearly native latency access to the corrected HPCs,
thereby enabling their use in dynamic control processes.

Using HPCs in Control. Several recent papers have explored
the use of HPCs to perform higher-level resource management prob-
lems. Examples include online performance hotspot identification
(e.g., [14]), userspace or runtime-level scheduling (e.g., [2, 4, 6, 10,
17, 38, 48]), power and energy management (e.g., [13, 36, 37, 40]),
and attack detectors and system integrity monitors [8]. Most of the
methods mentioned above do not explicitly use any techniques to
correct for errors in HPC measurements. Further, while it is not
impossible that some of the ML techniques can inherently correct
for HPC errors, there are no guarantees that it does so.

8 CONCLUSION

It is crucial to have reliable instrumentation/measurement in com-
mercial CPUs, as exemplified by the inclusion of the PEBS (precision
event-based sampling) and LBR (last branch record) technologies
in modern Intel processors. However, as we showed in this paper,
such technology alone falls short of correcting errors in the values
of HPCs accrued because of nondeterminism and sampling artifacts.
This paper presented the design and evaluation of BayesPerf, an
ML model and associated accelerator that allows for correction
of noisy HPC measurements, reducing the average error in HPC
measurements from 42.11% to 7.8% when events are being multi-
plexed. BayesPerf is the first step in realizing a general-purpose
HPC-error-correction system for real x86 and ppc64 systems to-
day and potentially for future processors. We believe it will form
the basis for performing large-scale measurement/characterization
studies that use HPC data (i.e., offline analysis), but also enable a
slew of applications that can use the HPC data to make control-
decisions in a computer system (i.e., online analysis).
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