I ILLINOIS

CSL | Coordinated . :
Selenee a5 Zbigniew Kalbarczyk, Ravishankar K. lyer

COLLEGE OF ENGINEERING

Subho S. Banerjee, Saurabh Jha,

BayesPerf: Minimizing Performance Monitoring
Errors Using Bayesian Statistics

ASPLOS 2021

Motivation

* Hardware performance counters (HPCs) are low-level monitors that
provide a window into the system

Motivation

* Hardware performance counters (HPCs) are low-level monitors that
provide a window into the system
* Performance Profiling — Why is my code slow?
* Profile-Guided Optimization — Provide sample traces to a compiler
* “Learned” controllers for scheduling, reliability, DVFS, security

f{r\é% Accelerated Probabilistic Programming System

¢ v

DNN-based Decision Policy

2-olbel " edle
H et e e v
e Ree s
ook Re e
o«
Probabilistic Latent System State Inference
" Y)
H ; ; (=) O)
: b1 g% =
.'. N\ 7\ s Y
o (HH) ()l ()
) DA,
.| Resource Uti ilization Failure Detection Intrusion Detection
T nowledge

& Data Collection Framework
I Hardware Counters “ OS Monitors/Probes “ Network/App Tracing l

0580
v Vv
A

w0y 23epdn Ty

>

Motivation

* Hardware performance counters (HPCs) are low-level monitors that

provide a window into the system
* Performance Profiling — Why is my code slow?

* Profile-Guided Optimization — Provide sample traces to a compiler
* “Learned” controllers for scheduling, reliability, DVFS, security

Issue: HPC measurement noise does not scale with #
of measurements

f{r\ér% Accelerated Probabilistic Programming System

¢ v

DNN-based Decision Policy

\ 2R /

A

R e °
VAW g i
A 4

Probabilistic Latent System State Inference

- N
() ()

\; \j/ g% .
AN s —~

() ()m()

\ J N

wyyod|y 91epdn 1y

>

@ Data Collection Framework

I Hardware Counters “ OS Monitors/Probes “ Network/App Tracing l

Motivation

* Hardware performance counters (HPCs) are low-level monitors that
provide a window into the system
* Performance Profiling — Why is my code slow?
* Profile-Guided Optimization — Provide sample traces to a compiler
* “Learned” controllers for scheduling, reliability, DVFS, security

f{r\é% Accelerated Probabilistic Programming System

* Issue: HPC measurement noise does not scale with # i .
of measurements g S

* Quantifying/Correcting errors is difficult: Ground truth not f f |

kn own Probabilistic Latent Sy;tem State Inference g

fﬁi iéfj EAN

* Noreal time correction techniques
* Directly limits the scalability of “learned” controllers

>

— L0

& Data Collection Framework
I Hardware Counters “ OS Monitors/Probes “ Network/App Tracing l

Motivation

* Hardware performance counters (HPCs) are low-level monitors that
provide a window into the system
* Performance Profiling — Why is my code slow?
* Profile-Guided Optimization — Provide sample traces to a compiler
* “Learned” controllers for scheduling, reliability, DVFS, security

fir\é:g Accelerated Probabilistic Programming System

* Issue: HPC measurement noise does not scale with # i .

of measurements " atiee. 17

* Quantifying/Correcting errors is difficult: Ground truth not j — f

kn OWn —— Probabilistic Latent‘/SYj?r:l State Jnf‘/e:‘ence 0%

: . : — L N SE

* No real time correction techniques — o e i L
 Directly limits the scalability of “learned” controllers T T

I Hardware Counters “ oS Monitors/Pr?bes “ Network/App Tracing l

BayesPerf: A system to quantify and minimize errors HPCs
* Bayesian generative model of HPC error process
» System implementation for Linux on x86 and ppc64 CPUs

Hardware Performance Counter Primer

Counters used in Polling Mode

ReadCounter(&start);
/* Sum two arrays */ \\\\\\\\\‘
for(i = 0; 1 < len; 1++) Counted Events = End - Start

2[i] = x[i] +V . Time
ReadCounter(&end); MB of memory read/written

e TLB misses

Hardware Performance Counter Primer

Counters used in Polling Mode

ReadCounter(&start);
/* Sum two arrays */ \\\\\\\\\‘
for(i = 0; 1 < len; 1++) Counted Events = End - Start

2[i] = x[i] +V . Time
ReadCounter(&end); * MB of memory read/written

e TLB misses

Clock: Clock: Instructions
Unhalted Core Unhalted Ref Retired

Fixed HPC: | F-HPCo || F-HPC1 || F-HPC2

Programmable HPC: P-HPC3 P-HPC4 P-HPC5 P-HPC6

Control Registers: C-HPC3 C-HPC4 C-HPC5 C-HPC6

Hardware Performance Counter Primer

Counters used in Polling Mode
ReadCounter(&start);

/* Sum two arrays */

for(i = 0; 1 < len; 1++)

.

Counted Events = End - Start

z[1] = x[1] + y[1]; . Time
ReadCounter(&end): MB of memory read/written
’ * TLB misses
Clock: Clock: Instructions
Unhalted Core Unhalted Ref ~ Retired
Fixed HPC: F-HPCo F-HPC1 F-HPC2
Programmable HPC: P-HPC3 P-HPC4 P-HPC5 P-HPC6
Control Registers: C-HPC3 C-HPC4 C-HPC5 C-HPC6

)

Read counters on x86 processors
rdmsr, rdpmc, rdtsc, rdtscp

Write event configuration on x86 processors
wrmsr

Hardware Performance Counter Primer

Counters used in Polling Mode
ReadCounter(&start);

/* Sum two arrays */

for(i = 0; 1 < len; 1++)

.

Counted Events = End - Start

z[1] = x[1] + y[i]; . Time
ReadCounter(&end): MB of memory read/written
’ * TLB misses
Clock: Clock: Instructions
Unhalted Core Unhalted Ref ~ Retired
Fixed HPC: F-HPCo F-HPC1 F-HPC2
Programmable HPC: P-HPC3 P-HPC4 P-HPC5 P-HPC6
Control Registers: C-HPC3 C-HPC4 C-HPC5 C-HPC6

)

Read counters on x86 processors
rdmsr, rdpmc, rdtsc, rdtscp

Write event configuration on x86 processors

wrmsr

Huge Imbalance
#Events >> #Counters

Hardware Performance Counter Primer

Counters used in Sampling Mode

Counters used in Polling Mode
ReadCounterl(&startl);

ReadCounter(&start);
aatou () ReadCounter2(&start2);
/* Sum two arrays */ . .
for(i = @; 1 < len; i++) Counted Events = End - Start mmmmp 7/ >um two arrays */
z[1] = x[1i] + y[i]; . for(i = 0; i < len; i++) {
’ + Time z[i] = x[i] + y[il;
ReadCounter(&end): MB of memory read/written 1f (1%2) SwapCounters()
’ e TLB misses }
ReadCounterl(&endl);
Clock: Clock: Instructions ReadCounter'Z(&endZ) -

Unhalted Core Unhalted Ref Retired
Fixed HPC: | F-HPCo || F-HPC1 || F-HPC2

Read counters on x86 processors
rdmsr, rdpmc, rdtsc, rdtscp

Programmable HPC: P-HPC3 P-HPC4 P-HPC5 P-HPC6

J] . .
Write event configuration on x86 processors

Control Registers: | C-HPC3 || c-HPCa || c-HPCs || c-HPC6 }Wmr

Huge Imbalance
#Events >> #Counters

Hardware Performance Counter Primer

Counters used in Sampling Mode

Counters used in Polling Mode
ReadCounterl(&startl);

ReadCounter(&start);
aatou () ReadCounter2(&start2);
/* Sum two arrays */ . .
for(i = @; 1 < len; i++) Counted Events = End - Start mmmmp 7/ >um two arrays */
z[1] = x[1i] + y[i]; . for(i = 0; i < len; i++) {
! + Time z[i] = x[i] + y[il;
ReadCounter(&end): MB of memory read/written 1f (1%2) SwapCounters()
’ e TLB misses }
ReadCounterl(&endl);
Clock: Clock: Instructions ReadCounterZ(&endZ) -

Unhalted Core Unhalted Ref Retired

Fixed HPC: | F-HPCo || F-HPC1 || F-HPC2

I I I > Read counters on x86 processors
rdmsr, rdpmc, rdtsc, rdtscp

A

Programmable HPC: P-HPC3 P-HPC4 P-HPC5 P-HPC6

A

Y Write event configuration on x86 processors
Control Registers: | | C-HPC3 || C-HPC4 || C-HPCs || C-HPC6 } rmer

Huge Imbalance

4 #Events >> #Counters
Interrupt

wrmsr //change counter
Threshold based performance wrmsr //update old event

monitoring interrupt

Imbalance between Events & Counters

1800 s 00 0ccccccssssssssee ;EE E E. E
: : X HaswellX : : :
1600 _....................E......................:......................E E. :. E
A : > lvyTown : : : :
'I'E 1400 b c 0000000000000 00000 EE é é é é
J, . eeeeeeeeeeeeeeeenne eeeeeeeeeeeeenee e)¢ BroadwellDE D eeeeeeeeeneeeneene :
lfl 1200 X Power8 g :
. et eeeeeeee e b et e e e n e e e e e e e deenna e e eeeeeeeedrenannneeeeeeeeeeeeeaannnnnns Ngheees POURFG - e rreeeennnes
@) 1000 : Jaketown : : X © : 9 :
e 800 |reerererereenes)§(.Wes.t.mgr.e£.l?...§ e s e
Q : : : : : :
g 600 X...N.éﬁélé.rﬁ....x.wes.t.me.reEx....E......................E %"B§Q§%\W§” E. ;
: SandyBridge . : : :
Z 400 b 0 0000000000000 000s § X. : ...%,y%ge.lﬂ.as*?/.e”. X”N’éh’a'[éﬁﬂ'f)("'x'B'T'O’éTdWé”EX"'E
500 K--Bonnel N ... HaswellE................ S e,
:I :I X Sllver:lmon :I Number of rﬁ' gisters :I
0)
2008 2010 2012 2014 2016 2018 2020
Year

[Adapted from “So many performance events, so little time,” APSys 2016]

Imbalance between Events & Counters

1S 0 0 N e :
1600
1400
1200
1000

800

600) %"Bg@%\?\(’/gn"

400

Number of Events

200>

0
2008 2010 2012 2014 2016 2018 2020

Year

Errors in HPC Measurements

|

Error = [Sampling** - Polled|

10 15 20 25 30 35
Number of Multiplexed Counters

Errors in HPC Measurements

Multiplexing is bad:
Errors increase linearly
with multiplexing

|

Error = [Sampling** - Polled|

Number of Multiplexed Counters

Many sources of error:

* Multiplexing HPCs
* How to scale up counters for the time that they were not scheduled?

Large variance: Non-

ErrOrS in HPC Measureme determinism in

measurements Multiplexing is bad:
Errors increase linearly

|

Linux (x86) —é— : :)) .
S\ 60 [Linux (p[_'().c64) -0 : : with multiplexing
L] 5O freeeseereeseees feceessens
©
Error = |[Sampling** - Polled| &
>
3

10 15 20 25 30 35
Number of Multiplexed Counters

Many sources of error:

* Multiplexing HPCs
* How to scale up counters for the time that they were not scheduled?

* Non-determinism
* Order in which interrupts are served
* Dropped measurements: Backpressure in ring-buffers between kernel and userspace

* Interactions between collocated processes/threads

Large variance: Non-
Errors In HPC Measureme| determinismin ——
measurements Multiplexing is bad:

Errors increase linearly

Q ° []

- Linux (x86) —>é— : : . . .

5\ 60 [Linux (ppc64) —@— ; with multiplexing
L] GO [receceererenees feceessens

oo

o

3

o0

S

<

|

Error = [Sampling** - Polled|

10 15 20 25 30 35
Number of Multiplexed Counters

Many sources of error:

* Multiplexing HPCs
* How to scale up counters for the time that they were not scheduled?

* Non-determinism
* Order in which interrupts are served
* Dropped measurements: Backpressure in ring-buffers between kernel and userspace

* Interactions between collocated processes/threads

* (Instruction Pointer) Skid

* Instruction level parallelism: Counters change between time interrupt enters processor pipeline and the
interrupt handler is triggered

* CPU Design/Implmentation Bug

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

Run 1
>
Time
Run 2
>
Time
Runn
>

Time

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

vty ggr

Dynamic time warping 1
4
AR}

o
Run tf \ii f_»

Run 2

]
I
]
L
]
I
]

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

P IS L B

Dynamic time warping ! : % Time
I I
I
Run 2 i ; f I
[]
: I M\ l / .
: H ! N / Time
Runn t t i j f
ﬁ
~—— Time
A Short interval
o+
-
-]
®)
v

Value

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

P IS L B

Dynamic time warping ! : % Time
I I
I
Run 2 i ; f I
[]
: I M\ l / .
: H ! N / Time
Runn t t i j f
ﬁ
~—— Time
A Short interval
o+
-
35
O /l\
U

Value

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

P IS L B

Dynamic time warping I 1 Time
] I
! I
Run 2 i i f I
.] 1
RN / .
: H ! N ;/ Time
Runn t t i j f
ﬁ
~—— Time
A Short interval
o+
c
>
: /l\
o
’I\ . >
Specialization Choices: Value

* Time warping cost function
* Shape of curve

e Thresholds
Unusable — Not real time!

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

P IS L B

Dynamic time warping I 1 Time
I I
! I
Run 2 i i f I
1
: I M\ I / .
: H ! N ;/ Time
Runn t t i j f
ﬁ
~—— Time
A Short interval
o+
cC
-]
o /l\
\
’I\ . Z
Specialization Choices: Value

* Time warping cost function
* Shape of curve

e Thresholds
Unusable — Not real time!

BayesPerf Correction (Key Idea)

Key Insight: Different perf counters are
interrelated based on system architecture

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

P IS L B

Dynamic time warping ! ! Time
I I
! I
Run 2 i i f I
. ! \\ I /
. ’ ' .
. N ;/ Time
Runn t t i j f
ﬁ
\ J :
Time
A Short interval
o+
cC
-
o /l\
o
’I\ . Z
Specialization Choices: Value

* Time warping cost function
* Shape of curve

e Thresholds

Unusable - Not real time!

BayesPerf Correction (Key Idea)

Key Insight: Different perf counters are
interrelated based on system architecture

Perf Counters: Memory BW,LLC Misses

LLC Misses X Cacheline Size
Memory BW = 5T

Mem BW

LLCM

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction)

AR S L -

Dynamic time warping !

H Time
] i I
Run 2 ', [f
. 1 I
I S\ / .
: 'l ', \\\ : ,I Time
Runn t t ii f
ﬁ
(. J/ Time
A Short interval
o+
-
>
: /l\
V)
I~ .
Specialization Choices: Value

* Time warping cost function
* Shape of curve

e Thresholds

Unusable - Not real time!

Mem BW

BayesPerf Correction (Key Idea)

Key Insight: Different perf counters are
interrelated based on system architecture

Perf Counters: Memory BW,LLC Misses

Memory BW =

LLCM

LLC Misses X Cacheline Size

Memory BW

100 9

80 4

oT

NS
i

20 40 60 80 100
LLC Misses

‘llllllll‘lul
o
o

Aysuaq Ayjiqeqoid

Error Correction for HPCs

Traditional Solution (Offline Variance Reduction) BayesPerf Correction (Key Idea)
Run 1 t t I I Key Insight: Different perf counters are
Dynamic time warping | , H :ime interrelated based on system architecture
P
I 1 .
Run 2 ! ! f | Perf Counters: Memory BW,LLC Misses
: [AR e
) o R / me LLC Misses X Cacheline Size
Run n t t i j f Memory BW = ST
—
~—— Time
A Short interval A 100 g: 29%0
J - 80
2 z %
- - 00
< 5 W 50
- £ o0 - - 40
o = g - 30
) s 3
20 A 20
’[\ é: 10
> * Quantify uncertainty the data point I B 0
ol ; ; . . 20 40 60 80 100
Specialization Choices: Value * Uncertainty ~ Color .
« Time warping cost function « Correct: MLE to “denoise” data LLC Misses
* Shape of curve * Does not require ground truth
e Thresholds
Unusable - Not real time!

Aysuaq Ayjiqeqoid

Stationary BayesPerf: The PGM Model

Question 1: How do we define the HPC distribution for a short interval of time?

Stationary BayesPerf: The PGM Model

Question 1: How do we define the HPC distribution for a short interval of time?

Noisy values of HPCs @ @
Measured

Stationary BayesPerf: The PGM Model

Question 1: How do we define the HPC distribution for a short interval of time?

ao(C)
VN

Noisy values of HPCs @
Measured

Cl~C; + Student(v = N —

True Value of HPCs

Unknown; To be inferred

Stationary BayesPerf: The PGM Model

Question 1: How do we define the HPC distribution for a short interval of time?

ag(Cy) Student(v

VN

CZ(NCi—F

I
=2
|

Noisy values of HPCs
Measured

True Value of HPCs

Unknown; To be inferred

Stationary BayesPerf: The PGM Model

Question 1: How do we define the HPC distribution for a short interval of time?

(@ .
(" ~ Cz + CPU Util. O Interconnect Util.O DMA Util.
‘ (Directly Attached)
Core #Cores Al #Sockets D
[] Util. Q
Noisy values of HPCs / . | Processing
DMA Util.
Measured (Switched) Fabric
o &
#Threads PCR Util. —04——0
True Value of HPCs Hops issued PCS Util.
Unknown; To be inferred BaCks:‘lj D
i o \
A Mem BW Util. Memory
Dividern System
FP Arith. DRAM Lat y
Util.
% . Cache Util.
[)
O)por i =~ DRATEWN"".. O
[]
FP Scalar FP Vector o * Outstanding System
[J

* Scalable, general & works for real processors

» x86 (Intel), ppc64 (IBM)

* Based on Intel’s “Top-Down Microarchitectural Analysis” in VTune
* Parse BN automatically from per p-arch listing in Linux Source Tree

* Contributed by vendors to Linux

Dynamic BayesPerf: Scheduling Counters

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

Dynamic BayesPerf: Scheduling Counters

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

/Samples

C1C1 C3 Co C2 C3 C2C2 C1 C1 C1 C2 C3
Time

Dynamic BayesPerf: Scheduling Counters

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

Time

{61762763} — {eaaedaee} {01762763} — {eeaefaea}

. Counter configuration changes —
| /Samples :M/ _/n |
| I
I I I
I Cc1Cq C3 C2 | C2 C3 C2Co C1 : C1 C1 C2 C3 b
I [.
| | : |
| | |

| /{01702763} — {eaa€b7€c}

Configuration

Dynamic BayesPerf: Scheduling Counters

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

. Counter configuration changes —
| Samples :<\/ S~ |
| r/ | : |
: C1Cq C3 : (65) C3 C2C9 C1 | C1 Cgb
I
I I I
I

/{01702963} ‘ﬁb;@c\l C1,Co, C3} = ‘Gd }\:\{017%

Configuration

Ensure
Overlap

\
) er(ea)

Time

Dynamic BayesPerf: Scheduling Counters

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

. Counter configuration changes —
/Samples —

I |

I I

I I

I Cc1Cq C3 C3 C2Co C1 C2 C3 b
I

| |

I I

C2
/{01702763}: b: e} | 02703} ?ed' ' {61762763 :Gf’
Configuration Ensure
Overlap @ @?

{ebvec} {ed}{ebaec}

Time

Effectively, with time BayesPerf is “inferring” all 6 counters in every interval

Dynamic BayesPerf: Scheduling Counters

/{01702763} b,@c} I {C%
Configuration Ensure
O R .

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

. Counter configuration changes —
| Samples :<\/ S~ |
| r/ | : |
: C1Cq C3 Co : C2 C3 C2C9 | Cgb
I
I I I
I

Vv

How to ensure overlap? i

Best effort {eb7 e,
Validity: Use Linux to find conflicting configs

Overlap: Remove nodes from combined Markov Blanket
of configurations across consecutive time slices

Effectively, with time BayesPerf is “inferring” all 6 counters in every interval

Dynamic BayesPerf: Scheduling Counters

Question 2: How do we track HPC measurements over larger intervals of time?

Hypothetical example: Measure events {eg, ep, e, €4, €, €} on counters {cy, ¢,, ¢3}

. Counter configuration changes —
| /Samples :J ~— . |
|

| | |

I C1C1 C3 Co | C2 C3 C2C9 : C3 b

| | | Ti

ime

| /{01702763} baec} : {C% :
Configuration Ensure
How to ensure overlap?
* Best effort {6b7 €c} What is the i.nference pro.cedure? ec}
 Validity: Use Linux to find conflicting configs * Expectation propagation
 Overlap: Remove nodes from combined Markov Blanket * Parallelize inference across

of configurations across consecutive time slices configuration changes

Effectively, with time BayesPerf is “inferring” all 6 counters in every interval

Training the BayesPerf Model

* Does this model require training? — Yes
* The measurement noise model: Parameter q;

Training the BayesPerf Model

* Does this model require training? — Yes
* The measurement noise model: Parameter q;

* In this paper: Make BayesPerf model application
agnostic
* Assume a normal prior
* Compute MLE of a; from the same data as (;
* “Works well enough”

Training the BayesPerf Model

* Does this model require training? — Yes
* The measurement noise model: Parameter q;

* In this paper: Make BayesPerf model application
agnostic
* Assume a normal prior
* Compute MLE of a; from the same data as (;
* “Works well enough”

* In general: BayesPerf can be trained with
representative workload set

* Train BayesPerf model using backpropagation -
ICML 2020

e What if error model is not Student-t? — DNNs

Inductive-bias-driven Reinforcement Learning for Efficient Schedules in
Heterogeneous Clusters

Subho S. Banerjee'! Saurabh Jha' Zbigniew T. Kalbarczyk' Ravishankar K. Iyer'

Abstract

The problem of scheduling of workloads onto
heterogeneous processors (e.g., CPUs, GPUs, FP-
GAs) is of fundamental importance in modern
data centers. Current system schedulers rely on
application/system-specific heuristics that have to
be built on a case-by-case basis. Recent work has
demonstrated ML techniques for automating the
heuristic search by using black-box approaches
which require significant training data and time,
which make them challenging to use in prac-
tice. This paper presents Symphony, a scheduling
framework that addresses the challenge in two
ways: (i) a domain-driven Bayesian reinforce-
ment learning (RL) model for scheduling, which
inherently models the resource dependencies iden-
tified from the system architecture; and (ii) a sam-
pling-based technique to compute the gradients of
a Bayesian model without performing full prob-
abilistic inference. Together, these techniques
reduce both the amount of training data and the
time required to produce scheduling policies that
significantly outperform black-box approaches by
up to 2.2x.

1. Introduction

The problem of scheduling of workloads on heterogeneous
processing fabrics (i.e., 1 dd includi

GPUs, FPGAs, and ASICs, e.g., Asanovi¢ (2014); Shao &
Brooks (2015)), is at its core an intractable NP-hard prob-
lem (Mastrolilli & Svensson, 2008; 2009). System sched-

haria et al. (2010)). Such heuristics are difficult to generate,
as variations across applications and system configurations
mean that significant amounts of time and money must be
spent in painstaking heuristic searches. Recent work has
demonstrated machine learning (ML) techniques (Delim-
itrou & Kozyrakis, 2013; 2014; Mao et al., 2016; 2018)
for automating heuristic searches by using black-box ap-
proaches which require significant training data and time,
making them challenging to use in practice.

hedul

This paper p Symphony, a framework
that addresses the challenge in two ways: (i) we use a
domain-guided Bayesian-model-based partially observable
Markov decision process (POMDP) (Astrom, 1965; Kael-
bling et al., 1998) to decrease the amount of training data
(i.e., sampled trajectories); and (ii) a sampling-based tech-
nique that allows one to compute the gradients of a Bayesian
model without performing full probabilistic inference. We
thus, significantly reduce the costs of (i) running a large het-
erogeneous computing system that uses an efficient schedul-
ing policy; and (ii) training the policy itself.

Reducing Training Data. State-of-the-art methods for
choosing an optimal action in POMDPs rely on training of
neural networks (NNs) (Mnih et al., 2016; Dhariwal et al.,
2017). As these approaches are model-free, training of the
NN requires large quantities of data and time to compute
meaningful policies. In contrast, we provide an inductive
bias for the reinforcement learning (RL) agent by encod-
ing domain knowledge as a Bayesian model that can infer
the latent state from observations, while at the same time
leveraging the scalability of deep learning methods through
end-to-end gradient descent. In the case of scheduling, our
inductive bias is a set of statistical relationships between

ulers generally rely on application- and syst pecific
heuristics with extensive domain-expert-driven tuning of
scheduling policies (e.g., Isard et al. (2009); Giceva et al.
(2014); Lyerly et al. (2018); Mars et al. (2011); Mars & Tang
(2013); Ousterhout et al. (2013); Xu et al. (2018); Yang et al.
(2013); Zhang et al. (2014); Zhuravlev et al. (2010); Za-

!University of Illinois at Urbana-Champaign, USA. Correspon-
dence to: Subho S. Banerjee <ssbaner2 @illinois.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

from microarchi I monitors (Dreyer &
Alpert, 1997). To the best of our knowledge, this is the first
paper to exploit those relationships and to

infer resource utilization in the system (i.e., latent state) to
build RL-based scheduling polices.

Reducing Training Time. The addition of the inductive
bias, while making the training process less data-hungry
(i.e., requiring fewer workload executions to train the
model), comes at the cost of additional training time: the
cost of performing full-Bayesian inference at every training
step (Dagum & Luby, 1993; Russell et al., 1995; Binder

41

The BayesPerf System

Userspace

Linux Kernel

' CPU

i BayesPerf Accelerator

The BayesPerf System

Userspace i Linux Kernel ECPU
Target Process | :
—— ! :
- >~ ! |
l App) :
| Threads /, ! !
é Linux Perf i
Subsytem .
perf_ev%nt_open :
g T > L e e e e e e e e
0 S BayesPerf Accelerator
config_hpc wn
\ - r;DU
n
=3
3

Monitoring
Application

The BayesPerf System

Userspace

uArch
Event
Source

HPC Config Counter

1

é Linux Perf i
Subsytem !

|

\ config_hpc
.

Monitoring
Application

wiys Jladsaheg
:

The BayesPerf System

Userspace Linux Kernel

uArch
Event
Source

Target Process
7 . O

: = N\ ' EMI 1 . HPC Config Counter
' A . PMI2 I

PMI 3
Threads | M3y, | o
_________ | |
: , :
é Linux Perf |
Subsytem .
perf_ev%nt_open :
o L o o e
0 S BayesPerf Accelerator
\ config_hpc %
. > o PEG Inf. Acc.
Monitoring = Z
- 0
Application %1 <
< — Q PEG Inf. Acc. 0
poll_bayes_hpc 3 > e
9 : 3
a I CAPI-based Direct Memory Accesk : o
D
| | a
! ! PEG Inf. Acc.
I I

* No modifications to

The BayesPerf System | peteentortin

1 o 1
Userspace | Linux Kernel ' CPU
: : uArch
Target Process | Q | Event
__________ 1 : Source
|
1

! \
| RN ! MI 1 HPC Config Counter
r—L>I uArch

[}

Ap P '_P_'\ﬂ> I Event
: o ‘/' Source
[}
l]

1
|
|
o |
é Linux Perf i
Subsvtem I * Implements EP for the BayesPerf models
y : * Code can be automatically generated
|

* CAPIv2 for ppc64

Y
ot}
@ = BayesPerfl~__XDMAfor x86
\ config_hpc %
o > o PEG Inf. Acc.
Monitoring = <
Application wn 2
= 3
< =) Q PEG Inf. Acc.
poll_bayes_hpc 3 % g
-—I =~ 3
* C-API compatible** with Perf - I CAPI-based Direct Memory Accesk =A
MLE measurements I I 3
* Override standard libc symbols ! ; PEG Inf. Acc.
| |

using LD_PRELOAD

The BayesPert Accelerator

Accelerates a Bayesian inference algorithm called Expectation Propagation
* Core operation 1: MCMC Sampling (85+% of runtime)

» Core operation 2: Vector Dot Product + Update
* Keep datain flight between Op1and Op2

The BayesPert Accelerator

To Host

PCle Endpoint

Accelerates a Bayesian inference algorithm called Expectation Propagation
* Core operation 1: MCMC Sampling (85+% of runtime)

» Core operation 2: Vector Dot Product + Update
* Keep datain flight between Op1and Op2

XDMA/PSL

Operation 2
Operation 1
Controller
NoC |
T I |
— EP 1 HT mdme |
| | Sampler |
[]
: | |
|
NoC -—> | e :
> EP k I
|
|
NoC > <{ITTH~| NoC |
AXI| Crossbar ! sgdr%mgr |
|
|
| |
AcMC2 generated
DRAM J‘ MCMC accelerator IPs

The BayesPert Accelerator

To Host

PCle Endpoint

Accelerates a Bayesian inference algorithm called Expectation Propagation
* Core operation 1: MCMC Sampling (85+% of runtime)

» Core operation 2: Vector Dot Product + Update
* Keep datain flight between Op1and Op2

XDMA/PSL

Operation 2
Operation 1
Controller
NoC ~
wwun 2 IS I+ i
—> EP1 I McMcC ||
| | Sampler |
: | |
I
NoC <> | . :
— EP k I
I
I
NoC - <{TTTH-| NoC |,
AXI Crossbar | Sgdr%mgr |
- t (Critical challenge: Keep data in flight
DRAM J_ * Uses CONNECT-based 8-endpoint 2-
VC torus NoC
* 228GB/s peak bisection bandwidth

The BayesPert Accelerator

To Host

Accelerates a Bayesian inference algorithm called Expectation Propagation
* Core operation 1: MCMC Sampling (85+% of runtime)

» Core operation 2: Vector Dot Product + Update
Keep data in flight between Op1and Op2

Controller

PCle Endpoint

XDMA/PSL

NoC
—- EP1

NoC

—P> EP k

NoC

AXI| Crossbar

|
|
|
|
|
|
- <-|:|:|:D-:PNoc:

Operation 2
Operation 1

- - - - -

NoC

oC ||

Mcmc | |
Sam

AcMC? [ASPLOS 2019

Session: Accelerators ASPLOS'19, April 13-17, 2019, Providence, RI, USA

AcMC2: Accelerated Markov Chain Monte Carlo for
Probabilistic Models

Subho S. Banerjee bigniew T. Kalt 1 ishankar K. Iyer
University of Illinois at University of Illinois at University of Illinois at
Urbana-Champaign Urbana-Champaign Urbana-Champaign

ssbaner2@illinois.edu kalbarcz@illinois.edu rkiyer@illinois.edu

Abstract 1 Introduction
bilistic models (PMs) are usedacrossa Many statistical- and machine- g (ML)

variety of machine learning applications. They have been automatically detect patterns in data, and then use the un-
shown to successfully integrate structural prior information covered patterns to predict future data, or to perform other
about data and effectively quantify uncertainty to enable the ~ Kinds of decisi king under inty. P ilisti
development of more powerful, interpretable, and efficient models (PMs; e.g., Markov models or Bayesian networks)
learning algorithms. This paper presents AcMC?, a compiler and inference techniques have been shown to successfully
that transforms PMs into optimized hardware accelerators integrate prior and structural relationships to quantify this

e (for use in FPGAS or ASICs) that utilize Markov chain Monte uncertainty [38]. This allows PMs to naturally complement

hadeiaintonand ihiianats i ‘many ML methods (like deep learning [26]; DL) that (1) do
not quantify uncertainty in their outputs [23], (2) seldom
produce interpretable results, and (3) do not generalize well
from small datasets or in cases with class imbalance. In fact,
there are ongoing efforts in the ML community to combine
PMs and DL to produce a Bayesian DL paradigm that can
take advantage of both the flexibility of PMs in encoding

del-related i i i

generated MCMC
samplers

g
with the immense scalability of DL [26].

Creation of optimized accelerators for DL models is well-
developed [1, 11, 35]. The creation of accelerators that can ex-
ecute infernence on PMs in real-time is substantially nonex-
istent, or is done only on a very problem-specific, hand-
optimized basis [6, 7, 15, 32, 34, 36, 42, 49]. Development

MCMC
Sampler ||

DRAM

Critical challenge: Keep data in flight
Uses CONNECT-based 8-endpoint 2-
VCtorus NoC

228GB/s peak bisection bandwidth

Parallel architectures; - Hardware — Hardware accel-
erators; + Software and its engineering — Compilers;
Domain specific languages.

of such accelerators is the focus of this paper. They will be

fundamental not just to the addressing of PMs, but also to

the integration PMs and DL.

Keywords Accelerator, Markov Chain Monte Carlo, Proba- Development of accelerators for execution of inference

ic Graphical Models, Probabilistic Programming on PMs requires (1) a high-level language representation of

PMs, and (2) a method to map this representation into an
i and cor is ized hardware that

ACM Reference Format:
Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. ¢ i
Iyer. 2019. AcMC?: Accelerated Markov Chain Monte Carlo for meets the real-time constraints. To address (1) ahove, we
Probabilistic Models. In 2019 Architectural Support for Programming leverage prior work that proposes probabilistic programming
Languages and Operating Systems (ASPLOS '19), April 13-17, 2019, languages (PPLs) [28] as a way to represent complex PMs as
Providence, RI, USA. ACM, New York, NY, USA, 14 pages. https: Programs (e.g., [13, 27, 30, 33, 44, 48, 56, 66]).
//doi.org/10.1145/3297858.3304019 This paper addresses (2) above by proposing AcMC?, a
compiler that transforms general PMs expressed in a PPL into
Permission to make digital or hard copies of all or part of this work for optimized hardware accelerators to infer query distributions
personal or classroom use is granted without fee provided that copies (G, qpentitiesfinterastyover the posteriorsaniplesofaPML.

are not made or distributed for profit or commercial advantage and that A St . i
copies bear this notice and the full citation on the first page. Copyrights Inference over PMs is analytically intractable in general [16];

for components of this work owned by others than the author(s) must therefore, we focus on methods that compute approximate
be honored. Abstracting with credit is permitted. To copy otherwise, or answers, in particular the sampling-based Markov-Chain
republish, to post on servers or to redistribute to lists, requires prior specific Monte Carlo (MCMC) methods. The crux of our approach
permission and/or a fee. Request permissions from permissions@acm.org. is three fold. (1) We identify and accelerate common com-

ASPLOS '19, April 13-17, 2019, Providence, RI, USA

® 2019 Copyright held by the owner/author(s). Publication rights licensed i
i e e of MCMC-based inference, that corresponds to the use of

'ACM ISBN 978-1-4503-6240-5/19/04...$15.00 multiple types of random number generators. (2) We use mar-
hitps://doi.org/10.1145/3297858.3304019 ginal and condi i to maximally exploit

putational kernels used across multiple models. In the case

515

Evaluation: Error Correction Performance of BayesPert

On average BayesPerf reduces error by as much 43.6% less error when scaling to 35 counters

[KMeans app from the HiBench benchmark suite]

=€ Linux (x86) BayesPerf (x86) Linux (ppc64)
CM (x86) WMK + Pin CM (ppc64)

Ty
o\\o/ 70 0..0: 00000000000000000000000

e N R R A

o 60 :

c 50 .

|.CIIJJ 208 &

b,o 30 ’: ecece

g 20

S 10

< 0

10 15 20 25 30 35 10 15 20 25 30 35
of Counters # of Counters

Baselines for comparison
* Linux (*) - Vanilla perf_event
¢ CM (*) - Counter Miner [MICRO 2018]

e Gumbel Extreme Value Detector + Logistic Regression
* WMK+Pin - [IISWC 2008]

* Rule-based correction

Evaluation: Error Correction Performance of BayesPert

On average BayesPerf reduces error by as much 43.6% less error when scaling to 35 counters

[KMeans app from the HiBench benchmark suite]

=€ Linux (x86) BayesPerf (x86) Linux (ppc64)
CM (x86) WMK + Pin CM (ppc64)

N\
o\\o/ 70 0..0: 00000000000000000000000

s T PR A

o 60 :

c 50 .

|.CIIJJ 208 &

o0 30 ’;

g 20 cccemmcccccoccoe

S 10

< 0

10 15 20 25 30 35 10 15 20 25 30 35
of Counters # of Counters

Baselines for comparison
* Linux (*) - Vanilla perf_event
¢ CM (*) - Counter Miner [MICRO 2018]

e Gumbel Extreme Value Detector + Logistic Regression
* WMK+Pin - [IISWC 2008]

* Rule-based correction

Evaluation: Error Correction Performance of BayesPert

BayesPerf running the entire HiBench suite for 25 HPCs

Linux (x86) . CM (x86) s BayesPerf (x86) s
5T ': """" g Linux (ppe64) B=2 - CM(ppeb4) =1 BayesPerf (ppc6g) EEEE ey EAEA
il I IOUUUUOE U | EUUUUN:SOPDOPRE OSOPUO HENOO SOPPOON SODPOOOE IOV 0S OO TUTTIIE SOPPPOTE OO ooty F0LoOMSOUTTON SOUOUOe MO w00 SocOOTTETUUOOO SO DOTPOON SOOI SO SO0 90
5 45 [roireeie -------- S S ive oot S AU ! AR S S
S I | (I EZZZI"IZZZIEIZIZ'EII'iIZZI'"EZZZI 'EZIZI"ZEIZIZ 'ZZIZ'?IZZZ"ZZI Ji ':"IZIIIZZ?IZZIZIZ':IZZZIZI':ZIZZIZZI?IZZ ZZZ ?ZZZI?IZZII"'EIZZZ'I?'ZZ "ZZZ?IZII’-IZZI L
SRR I | | 1" (I {0 1 (PN (R | IO | LI (PR RN o O N 110 (I [|
§° z{% 'IZI ';IIII ” H il Ii “ IZI 'ZZI i III ZI ZI EIZZZI i . ZIZ%IIII';IIZ ZI i . "..IIZI ZI IZI H ZIZ IZ ZI
z 15 - || | | | | -1 AR | Y 1K b ~H-Ih-
H- i | N o | l | -
O oW

go((,0\5\& 350 &\’0 ?S\ %a\;e N\@(\% QN\N\ 5 P\\f” ()%ﬁ %Oos’& \ e ok QCP\ ?& S\IN\ 5\10 S@(\ 30\“ %3& ?\30 (\% e\%‘(\ (\&\‘l &\K\o (,0\)(\ 30
ot Qe® *© pe© &

Evaluation: Error Correction Performance of BayesPert

BayesPerf running the entire HiBench suite for 25 HPCs

Average Error (%)

Normalized Improvement

Linux (x86) . CM (x86) s BayesPerf (x86) s

55 ['; """" R S - _ Linux (ppc64) =3) CN_‘(PPC_64)I_:':Baye_SPef'f:(PPC6_4)'ZZ_ZE";"""':""""_ """ '_ """"
D10 pt AR | PRS- A -A ittt A - A = AR St thb R A { FARRRR AR , R
L e s | e e e
i ::g::::%ﬁ:: E::::':f::':::”;:: f::é:: '::: :5::: 'f:::::::g::::?::::é::::i:::”g::: g::::";::':': “:: L
: -=;:: :;:::: | I I B H - “ 5 H i =::: I ":: I :: g::: (18 H i ;::::::;::::""'::' i f:::: I I ;51211 H I} ::: H ;;; =-;: | I
B0 1 I O L L L 18
sHEEERE |||||I 0L
" I|!!| I! I|!!|I.. " ||°I|!| (V¥ !l' !I |I!|l|i II !I |I!||. II !Il! !l ln.
3og:dcou<§e(a:o$ K0 ((5\ %3\;@ N\eao% QN\N\ (SN ()‘?;6%006‘ e \OP o™ &G O ey ;:é p ¥ ’ﬁéi\gi\:\(\e{\o\;é \Ne‘%“ de“‘;: ﬁ;&?\l\&“ oo

Average Improvement: BP vs Linux = 4.9x, 5.3x
Best Improvement: BP vs Linux = 7.8x, 7.6x

BayesPerf vs Linux (x86) s
_ BayesPerf Vs Linux (ppc64) EZZZZI

BayesPerf vs CM (x86) E=—1

..

A4 P IS

TR EEAE
DL XXX X X X X X

.................

- N W b~ U1 OOy

»Y.Y.Y.YOYOY‘Q!
EOOOCOCOO0:0:0; JNE I

LSOOV, TN I
[

O @)o\“ X o0
oS %Qa%e‘*

BP vs CM =
BP vs CM =

s’@‘

3.6X, 3.7X
6X, 5.4X

BayesPerf Vs CM (ppc64) m -------- e preeeee ARREEEEESELLOIRY peeeneee

..

.......................

*\(\% e\%\(\ (\\,\\; ‘\\'\O Co\)(\ 6 \N
0 e e NO R
s@"

Evaluation: Overheads

32768
16384
8192
4096
2048

1024

Avg. Overhead (cycles)

Evaluation: Overheads

A~ 32768 —.....: :. poocccccccscce ::
L N S S = S S
% 16304 : 9X OVél‘h:'éad“ : 5 5
;r%/ 8192E E..............E %
_GCJ 4096 .o a— 2%.0-?erhead...;
. . ‘
g 2048 o dUe c oo 000cccsofhocccscccccccse E..............E...

| | |
. 1024
o0 W) C) Al

)% C o

< e = &?ﬁN\\

eS

Evaluation: Overheads

What happens to PCle latency?

* Amortized over multiple HPCs being
inferred

* Overlap computation and
communication on accelerator

~ 32768
T 1638
% 16304
%/ 8192
O 4096
L

O 2048
C>> 4
b 1024
>

<

Learned Controller Case Study: Scheduling PCle Transfers

GTask)

GPU__ GPU

] CRIER)

Tas% Task

Block Manager

q] NIC

Task

)

}

1

Shuffle Manager

Spark Executor

Block Manager

1

Shuffle Manager

Spark Executor

Learned Controller Case Study: Scheduling PCle Transfers

GPU

Tas% Task GTask)

Block Manager

GPU

g CRIER)

q] NIC

Task

)

} |

Shuffle Manager

’q§=¢3

Spark Executor

Block Manager

' I

Shuffle Manager

Spark Executor

| Training GPU | |BayesPerfFPGA|

Learned Controller Case Study: Scheduling PCle Transfers

| Training GPU | |BayesPerfFPGA|

Task

Task

GTask

GPU

[
»

\

Block Manager

A

}

1

Shuffle Manager

GPU

B

Task

)

\ 4

91 NIC

Transfer “5{}?

Scheduler [|Flama
BayesPerf

Spark Executor

Block Manager

A 4

1

Shuffle Manager

Spark Executor

To Network

(Link Aggregation)

To Network

Learned Controller Case Study: Scheduling PCle Transfers

Task Task GTask

GPU

\

Block Manager

A

} |

Shuffle Manager

G

. PU
e

Task

)

\ 4

9] NIC

Transfer :n:'!':'}"?

Scheduler —FE=a
BayesPerf

Spark Executor

Block Manager

! 1

Shuffle Manager

Spark Executor

| Training GPU | |BayesPerfFPGA|

To Network

To Network
o mewer (Link Aggregation)

The Transfer Scheduler is trained using: RL [Symphony - ICML2020], CF [Paragon - ASPLOS 2013]

Learned Controller Case Study: Scheduling PCle Transfers

| Training GPU | |BayesPerfFPGA|

Task Task GTask

GPU__ GPU

\

M ol 1)

Block Manager

} |

Task

=

\ 4

9] NIC
Transfer :n'ﬁ
Scheduler —EE34

Shuffle Manager

BayesPerf

Spark Executor

Block Manager

} I

Shuffle Manager

Spark Executor

Upto 19% improvement in overall shuffle completion time

50

Shuffle Completion
Time (%)
W
(@)

m Paragon m Symphony

19.1% improvement

BayesPerf

To Network To Network
(Link Aggregation)

 The Transfer Scheduler is trained using: RL [Symphony - ICML2020], CF [Paragon - ASPLOS 2013]

37% reduction in time to convergence for the RL model

..

BayesPerf (Acc) —%— ..
BayesPerf (CPU) —@®—
Linux —8— :

Loss

....................................

............

0 1000 2000 3000 4000 5000 6000 7000 8000 9pPO
[teration Count

Conclusion

BayesPerf: A system for real-time quantification and of HPC

measurement errors
Can reduce errors by as much as 8x with <2% latency overhead

* Net effect of BayesPert

* Increases the number of HPC registers
* Decreases the sampling frequency

Conclusion

BayesPerf: A system for real-time quantification and of HPC

measurement errors
Can reduce errors by as much as 8x with <2% latency overhead

* Net effect of BayesPert
* Increases the number of HPC registers
* Decreases the sampling frequency

* BayesPerf will benefit the portability/scalability of ML for systems
* More measurements at less error = More controllers deployed
* Composability with other ML models

Conclusion

BayesPerf: A system for real-time quantification and of HPC

measurement errors
Can reduce errors by as much as 8x with <2% latency overhead

* Net effect of BayesPert
* Increases the number of HPC registers
* Decreases the sampling frequency

* BayesPerf will benefit the portability/scalability of ML for systems
* More measurements at less error = More controllers deployed
* Composability with other ML models

* We think this idea can be used quantifying and correcting errors other ML
applications

