
Exploiting Temporal Data Diversity for Detecting
Safety-critical Faults in AV Compute Systems

Saurabh Jha∗, Shengkun Cui∗, Timothy Tsai†, Siva Kumar Sastry Hari†, Michael B. Sullivan†,
Zbigniew T. Kalbarczyk∗, Stephen W. Keckler† and Ravishankar K. Iyer∗
∗University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA.

†NVIDIA Corporation, Santa Clara, CA 94086, USA.

Abstract—Silent data corruption caused by random hardware
faults in autonomous vehicle (AV) computational elements is a
significant threat to vehicle safety. Previous research has explored
design diversity, data diversity, and duplication techniques to
detect such faults in other safety-critical domains. However, these
are challenging to use for AVs in practice due to significant
resource overhead and design complexity.

We propose, DiverseAV, a low-cost data-diversity-based redun-
dancy technique for detecting safety-critical random hardware
faults in computational engines (i.e., CPUs and GPUs). To
overcome resource overhead and design challenges, unlike typical
data-diverse systems that rely on data transformation techniques,
DiverseAV exploits the temporal semantic consistency available in
the autonomous vehicle sensor data to create data-diverse inputs.
Specifically, DiverseAV distributes the sensor data between the
two software agents in a round-robin manner. As a result, the
sensor data for two consecutive time steps are semantically
similar in terms of their worldview but significantly different
at the bit level, thus ensuring the state and data diversity
between the two agents necessary for detecting faults. Such a data
distribution strategy enables DiverseAV to reduce the resource
overhead and the effort required to deploy our technique in
real-world settings. DiverseAV shows promising results in our
fault injection-based assessment of an open-source AI agent in
detecting safety-critical faults with minimal resource overheads.

I. INTRODUCTION
Autonomous vehicle (AV) technologies are advertised to

be transformative, with a potential for bringing greater conve-
nience, improved productivity, and safer roads [1]. Ensuring the
safety of AVs is critical for their mass deployment and public
adoption. Random hardware faults, transient or permanent [2],
caused by power-supply spikes, electrostatic discharge, and
external radiation strikes in the computational elements, such
as CPUs, GPUs, and ASICs, used in AVs pose a significant
threat to the safety of the vehicle [3], [4]. Such faults may
lead to a detectable uncorrectable error (DUE) that degrades
system availability or an undetected error, i.e., a silent data
corruption (SDC), that may cause vehicle misbehavior. Practical
implementations of autonomous driving systems include a fail-
back system that maintains the safety of the system in the case
of a DUE. In contrast, faulty behavior due to an SDC may
lead to significant safety hazards, resulting in loss of human
life and serious damage to vehicles [5]–[7]. Future trends of
increasing code complexity and shrinking feature sizes will
only contribute to increasing failure rates, thereby exacerbating
the problem. The magnitude of the problem is highlighted
by the ISO 26262 standard [3] for functional safety of road
vehicles, which mandates that the residual FIT rate1 of the
System on Chip (SoC) used in autonomous vehicles should be
<10 FIT for the highest level of safety.

Current strategies for error mitigation include fault avoidance
and error detection mechanisms. Often DRAM memories and

1Failure-in-Time rate: 1 FIT = 1 failure per 1 billion hours.

large SRAM arrays are protected by ECC (error correcting
codes), data communication is protected by parity and check-
sums [8], [9], and critical software, including operating systems,
are executed on duplicated cores. Other techniques include
assertions [10]–[13], duplication [14], [15], [15]–[21], and data
and design diversity techniques [22]–[24] that can be employed
at the hardware or software level. Although these strategies are
largely effective, they are challenging to use in practice because
of chip area and power overheads, performance degradation,
and design complexity. Furthermore, due to the significant
probability that an error in the AV software is masked [7], many
instances of error detection degrade the AV system availability
without improving system safety.

Our Approach. We address the above-mentioned chal-
lenges by proposing DiverseAV, a lightweight, software-based
redundancy technique that exploits the temporal data diversity
present in the sensor data for detecting hardware faults. It is an
affordable alternative to a fully duplicated system for detecting
transient and permanent hardware faults. DiverseAV trades off
a marginal decrease (as compared with fully duplicated system)
in error detection coverage to achieve significantly lower design
complexity and resource overheads along with corresponding
power savings. Our approach requires no additional hardware
and minimal modification of the AV software. DiverseAV
incorporates the following key ideas.

Independent and data-diverse agents. DiverseAV instanti-
ates two independent software processes that use the same
autonomous vehicle software code (referred to as an AI-agent
or agent). However, unlike a fully duplicated system in which
agents use the exact same sensor data, DiverseAV introduces
data diversity between the two agents in which the two agents
use diverse data to compute control decisions. DiverseAV
introduces data diversity by exploiting the temporal semantic
consistency in the autonomous vehicle workload: the sensor
data (e.g., two subsequent video frames from camera sensors
that provide an object’s location and environment state) do not
change significantly from one time step to another (e.g., from
one time frame to another) even though the data at the bit level
(i.e., bit/pixel level representation of a camera image/frame) is
vastly different. DiverseAV does so by distributing the sensor
data in a round-robin manner between the two redundant agents,
thereby, introducing data diversity between two consecutive
time steps at the instruction level while maintaining the
semantic consistency between the two agents at the world level.
The data-diverse agents produce similar but not necessarily the
same output and the divergence between the two outputs in a
fault-free execution is bounded due to the semantic similarity
of the inputs in adjacent time steps.

Because much of the data processing in each agent depends
on the input data rate, each agent receives half the data and

1

requires roughly half the compute resources. However, the
question is: Does this decrease in the input data rate per
agent lead to safety hazards? Recent work [25] on AVs (e.g.,
NVIDIA DriveAV [26]) shows that the AVs can often tolerate
a significant drop in the input data rate without causing safety
hazards. For example, authors show that the camera sensing
rate can be decreased from 30 Hz to 10 Hz safely for many
scenarios.

Fault propagation and error detection. Since the divergence
between the outputs of the two data-diverse agents is bounded
in the fault-free case, DiverseAV is able to detect the error by
comparing the output actuator commands (brake, throttle, and
steering angle commands) of the agents. Most errors in AV
software state do not propagate in a way that significantly
affects actuator commands [7]. For those errors that do
significantly affect actuator commands, the outputs of the two
agents may diverge depending on the fault type, propagation,
and masking in each of the individual processes. (i) A transient
fault affects only one process enabling DiverseAV to detect
the fault because of the independence between the agents.
The fault-free agent produces fault-free outputs whereas the
other agent (impacted by the fault) produces the corrupted
outputs. (ii) A permanent fault that affects both processes
may be detectable because in the presence of a fault the two
agents produce significantly different corrupted outputs as the
corruption depends on the internal (private) state of and inputs
to each agent, which are diverse by design [24]. There is a non-
zero chance that a permanent fault will corrupt the state of both
agents resulting in a sufficiently small output divergence that
evades detection. Such permanent faults can be detected using
a fully duplicated system but not DiverseAV. Thus, DiverseAV
trades off error detection coverage for lower overheads, design
complexity and availability. However, we show in §VI-A that
the probability of a missed fault resulting in a safety hazard is
small (∼ 0.001).

Overall, DiverseAV is a black-box technique that offers
a plug-and-play solution as it requires no knowledge of the
internals of the Autonomous driving system (ADS), requiring
little to no modification to the agent itself for achieving high
coverage of transient and permanent hardware faults. It is
commercially viable because it avoids software modifications to
agents that are costly in terms of development and testing time.
It is advantageous as it provides the state diversity between
the two agents needed to detect random hardware faults at a
significantly lower cost, thus, eliminating the need for a fully
duplicated system.

Contributions. Our contributions include the following:
(i) We propose a novel high fault detection coverage and low

overhead design called DiverseAV for detecting random
hardware faults, transient and permanent, in the compute
elements of the AV.

(ii) We have implemented the proposed design using an
open-source agent [27] and an open-source simulation
platform [28].

(iii) We provide an empirical characterization of temporal
data diversity in onboard sensors.

(iv) Using the open-source fault injection tools NVBitFI [29]
and PINFI [30]2, we have performed an experimental
assessment of the functional safety of DiverseAV in fault-
free operation and in the presence of faults. We also

2In [31], authors have shown that fault injection-based fault simulation
techniques estimate SDC FIT rates that are comparable with beam test results.

characterize the performance overhead of the proposed
design.

(v) Proving safety of AVs is theoretically challenging and is
an open research question [32]. Therefore, we empirically
evaluate the functional safety and fault-detection capa-
bilities of DiverseAV on realistic scenarios comprised of
long scenarios and safety-critical scenarios. The long
scenarios consist of daily driving tasks with a mixture of
urban and highway driving [33], and the safety-critical
scenarios consist of short but risky (or incident-prone)
situations [34].

(vi) Finally, we compare the fault detection capabilities of
DiverseAV-enabled ADS with an ADS that uses (i) full
duplication of the agents to detect mismatch in outputs
of the agents, and (ii) temporal outlier detection on the
outputs of a single agent to detect anomalies. In each
case, the underlying agent is the same.

Results. Key results include the following:
(i) High safety. DiverseAV did not pose any negative

consequence on safety in any of the evaluated driving
scenarios.

(ii) Highly accurate. DiverseAV detected safety-critical errors
caused by the transient and permanent faults injected
into the compute elements (CPUs and GPUs). For
GPUs, DiverseAV achieved a precision of 0.87 and
a recall of 0.873. For CPUs, all our injected faults
were either masked or resulted in a DUE, and we
expect the contribution of CPU faults to the system-
level SDC FIT rate to be low. Across all our driving
scenarios, DiverseAV did not raise an alarm (i.e., detected
an error) for fault-free experimental runs. DiverseAV
outperforms a single-agent system (which uses temporal
outlier detection techniques) in terms of accuracy. The
single-agent system yields a precision and recall of 0.17
and 0.52, respectively. We assume availability of a fail-
back system that can be invoked on error to bring the
vehicle to a safe state.

(iii) Low performance overhead. Compared to a fully dupli-
cated system, DiverseAV reduced the resource demands
so that the same processor provisioned for a single-agent
system is sufficient to handle DiverseAV’s two agents, al-
though twice as much memory is needed to accommodate
the two independent agents. In contrast, a fully duplicated
system requires double the number of processors and
memory. DiverseAV trades off a marginal decrease in
error detection coverage (compared to fully duplicated
system) for reduction in compute resource overhead and
design complexity while increasing availability.

II. BACKGROUND

A. Autonomous Driving Systems
Autonomous driving systems (ADS) are feedback-based

control systems. Examples include self-driving cars, drones,
and unmanned aerial vehicles. Fig. 1 shows the architecture
of a typical ADS. An ADS continuously uses measurements
from the “sensors” to infer the state of the world (“world
model”), plans its trajectory (“planning”), and makes “ac-
tuation” decisions to drive the vehicle towards a set goal,

3High precision means DiverseAV correctly returns many more true positives
(i.e., detects safety violations) than false positives, whereas higher recall (also
known as sensitivity) means DiverseAV identifies a high fraction of true
positives.

2

D
riv

in
g/

tra
je

ct
or

y
fa

ul
t p

ro
pa

ga
tio

n

So
ftw

ar
e

fa
ul

t
pr

op
ag

at
io

n

Temporal fault propagation
for k time-steps

World model

Hardware

Perception &
Localization

Planning
ActuationActuators

Sensors 1

2

3 4

CPUs GPUs FPGAs HCAs

(a) ADS driving the car in the environment
(b) Impact of permanent

fault on actuation
(c) Impact of permanent

fault on safety

0 5 10 15

Time (s)

0.0

0.2

0.4

0.6

0.8

T
h
ro

tt
le

faulty

golden

0 2 4 6 8 10

Time (s)

°1.25

°1.00

°0.75

°0.50

°0.25

0.00

0.25

C
V

IP
D

iÆ
er

en
ce

(m
)

Ti
m

e

ActionsDriving Agent

Environment

actuation

(a) Fault propagation in the ADS
(b) Impact of permanent GPU

fault on actuation outputs
(c) Impact of permanent GPU

fault on safety

Driving Scenario

Figure 1: Depiction of fault propagation in autonomous
driving system controlling the AI-driven vehicle (in red).

all while ensuring the comfort, safety, and integrity of the
passenger/vehicle and its surroundings. The control loop can
be implemented as an end-to-end deep neural network (DNN)
agent with a proportional–integral–derivative (PID) controller
(e.g., Dave2 [35]) or as an ensemble of models (EM) agent (e.g.,
Baidu’s Apollo [36]) in which each model is responsible for
individual sub-tasks (such as perception, planning, and control).
The agent must be able to execute the control loop at a very
high frequency (∼ 10− 100 Hz) to dynamically infer changes
in the environment and react to those changes in real time. The
algorithms used by the agent are computationally expensive,
thereby requiring the use of a heterogeneous computational
fabric consisting of CPUs, GPUs, and ASICs [16], [37].

B. Fault Models
The faults are the primary concern of ISO 26262 [3], which

is an important certification for AV compute systems. In this
paper, we only consider random hardware faults, transient
or permanent, that occur in the computational elements of
the processor, including pipeline stages, flip-flops, arithmetic
and logic units (ALUs), and the register file. We do not
consider faults in the main memory or cache, as we assume
that these are protected with ECC (e.g., NVIDIA GPUs [38]).
However, when the random hardware faults propagate, they
eventually corrupt the destination register of the executing
opcode [29], [30], [38]–[40]. We emulate these faults via
instruction-level bit-flip models, in the computational fabrics
used by the ADS (such as CPUs and GPUs), using state-of-
the-art fault injection tools [30], [41]. We do not consider
sensor faults (e.g., corrupted video frame due to a camera
sensor failure) or machine-learning inference faults (e.g., due
to out-of-distribution data).

In the transient fault model, we emulate the effect of a fault
by corrupting the destination register of only one dynamic
instruction4. In contrast, in the permanent fault model, we
emulate the effect of the fault by corrupting the destination
register of a selected opcode for all dynamic instances of that
opcode. The destination register is corrupted by XOR-ing the
original contents of the destination register with a selected
mask. In this work, we only aim to detect faults (transient or
permanent) that lead to safety hazards and do not aim to identify
the fault type (i.e., differentiate transient from permanent fault).

C. Impact of Faults on Safety
Hardware faults can alter the actuation decision outputs,

thereby impacting the safety of the vehicle. A typical hardware
fault propagation path is shown in Fig. 1. Hardware faults
may corrupt the output of the hardware instruction (e.g.,
output of the add instruction), which in turn can corrupt

4Dynamic instances of an opcode are the actual instructions of that opcode
that are fetched and executed by the processor.

the output of the software module (e.g., perception outputs).
The corrupted values are then consumed by other software
modules; which may ultimately taint the actuation outputs.
The fault propagation in the software may also corrupt the
internal state of the software (until the next reset/restart), which
may result in subsequent corruption of actuation outputs in
the future time steps. The corrupted actuation outputs for one
or more time steps may accumulate and change the vehicle’s
kinematics sufficiently to cause an accident. The impact of
random hardware faults on safety is discussed through extensive
experiments in §V-C.

Not all faults are hazardous to the system. Faults may
result in benign masking, a silent data corruption (SDC),
a hang, or a crash. Hangs and crashes are detected by the
system via exceptions and heartbeats, whereas SDCs may
potentially propagate to cause safety violations. Lockstep-
based full duplication of software and hardware ensures robust
detection of SDCs; however, they result in high resource
provisioning, power overheads, and design complexity [16].

III. METHODOLOGY AND APPROACH

A. Design Requirements
DiverseAV addresses the following design requirements.
Detection of transient and permanent faults. DiverseAV

must only detect transient and permanent faults that are safety-
critical with high probability sufficiently far in advance. Detect-
ing faults masked by hardware or software will significantly
reduce the overall system availability.

Driving scenario-independent. The error detector in Di-
verseAV must be able to detect errors for all possible driving
scenarios and should not be limited to only those driving
scenarios that were used to train the error detector model.

Plug and play design. DiverseAV must implement a
plug-and-play design, thereby reducing the engineering and
deployment effort. This means that the AV agent code can
be treated as a black box, where only the API for inputs and
outputs (e.g., port numbers) need to be known.

Low cost. DiverseAV must achieve all the above properties
with minimal computational and area cost overhead.

B. Design Principles
In this work, we propose and describe our implementation

of DiverseAV, which exploits the principle of temporal data
diversity and redundancy. DiverseAV is an innovative redundant
design for autonomous vehicles consisting of two independent
software agents that are dynamic instances of the same
underlying agent models (software) and are time-multiplexed
on the shared computational fabric to actuate the vehicle. Time-
multiplexing allows the following:

Semantic consistency. Each agent consumes semantically
similar data. The sensing data used by the time-multiplexed
redundant agents are semantically similar because the sensing
frequency is typically very high, ranging from 10 Hz to 100 Hz
among different sensors, and the world view (world semantics)
does not change significantly between subsequent time steps.

Temporal data diversity. Temporal data diversity is en-
forced between the agents at the bit level (bit-level diversity).
Sensor data obtained at consecutive time steps are semantically
similar but differ significantly at the bit level. For example,
objects captured in the camera frame at time t continue to exist
in the frame at time t+1 with small shifts in their positions.
However, at a pixel location, temporal data diversity is enforced

3

0 5 10 15

Time (s)

0.0

0.2

0.4

0.6

0.8

T
h
ro

tt
le

single agent diverseAV (agent 0+1)

Agent 0 Agent 1

LIDAR camera RADAR

Sensor Data Distributor

Camera Image (t) Camera Image (t+1)

CPUs GPUs FPGAs HCAs

OS

Er
ro

r D
et

ec
tio

n
&

C
on

tro
l

Fu
si

on
 E

ng
in

e
GPS IMU

Bit-level data diversity among agents

Vehicle safety and dynamics intact

RGB pixel 24-bit
representation (t)

RGB pixel 24-bit
representation (t+1)

Pixel Value: 95, 95, 95 Pixel Value: 96, 96, 96

1 2

11111 10 0
11111 10 0
11111 10 0

01 00 00 1 0
01 00 00 1 0

01 00 00 1 0

Example showcasing 18 bits different for a pixel located at ‘X’ at timestamp t and t+1

R
G
B

R
G
B

3

4

0 5 10 15

Time (s)

10

20

30

40

50

C
V

IP

single agent

diverseAV (agent 0+1)

DiverseAV

ut
<latexit sha1_base64="+m8QHC90nLRY7KoKumkhFEOGV1w=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU0nS0NZbwYvHCqYttKFsttt26WYTdidCCf0NXjwo4tUf5M1/46atoKIPBh7vzTAzL0wE12DbH1ZhY3Nre6e4W9rbPzg8Kh+fdHScKsp8GotY9UKimeCS+cBBsF6iGIlCwbrh7Dr3u/dMaR7LO5gnLIjIRPIxpwSM5KfDDBbDcsWuXjXrrlfHdtW2G47r5MRteDUPO0bJUUFrtIfl98EopmnEJFBBtO47dgJBRhRwKtiiNEg1SwidkQnrGypJxHSQLY9d4AujjPA4VqYk4KX6fSIjkdbzKDSdEYGp/u3l4l9eP4VxM8i4TFJgkq4WjVOBIcb553jEFaMg5oYQqri5FdMpUYSCyadkQvj6FP9POm7VqVXdW6/Swus4iugMnaNL5KAGaqEb1EY+ooijB/SEni1pPVov1uuqtWCtZ07RD1hvn4ivjxA=</latexit>

5 6 7 8

Time (s)

0.0

0.2

0.4

0.6

0.8

T
h
ro

tt
le

5 6 7 8

Time (s)

0.0

0.2

0.4

0.6

0.8

T
h
ro

tt
le

agent
0

1

Throttle values from original
ADS (single agent system)

Throttle values from DiverseAV-
enabled ADS

4 6 8 10

Time (s)

°0.8

°0.6

°0.4

°0.2

0.0

0.2

type
DiverseAV (no fault)

DiverseAV (under fault)

Single agent (under fault)

Change in CVIP due to fault in original
(single agent) and DiverseAV-enabled ADS

Comparing throttle values of original
(single agent) with DiverseAV-enabled ADS

Comparing safety of original (single
agent) with DiverseAV-enabled ADS

(a) (b) (c)

(a) (b)

(a) (b)

Failure detection

u2t+1
<latexit sha1_base64="ZoREAfV4T3q7atUaGxd0zOHeeHU=">AAAB73icdVDLSsNAFJ3UV62vqks3g0UQhJCkoa27ghuXFewD2lAm00k7dPJw5kYooT/hxoUibv0dd/6Nk7aCih64cDjnXu69x08EV2BZH0ZhbX1jc6u4XdrZ3ds/KB8edVScSsraNBax7PlEMcEj1gYOgvUSyUjoC9b1p1e5371nUvE4uoVZwryQjCMecEpAS710mDlwYc+H5YplXjZqjlvDlmlZdduxc+LU3aqLba3kqKAVWsPy+2AU0zRkEVBBlOrbVgJeRiRwKti8NEgVSwidkjHraxqRkCkvW9w7x2daGeEglroiwAv1+0RGQqVmoa87QwIT9dvLxb+8fgpBw8t4lKTAIrpcFKQCQ4zz5/GIS0ZBzDQhVHJ9K6YTIgkFHVFJh/D1Kf6fdBzTrprOjVtp4lUcRXSCTtE5slEdNdE1aqE2okigB/SEno0749F4MV6XrQVjNXOMfsB4+wTU5I+8</latexit>

u2t
<latexit sha1_base64="59JEpROcBp7vmkCcp4vxBbZv0kU=">AAAB7XicdVBNS8NAEN3Ur1q/qh69LBbBU0jS0NZbwYvHCrYW2lA22227dpMNuxOhhP4HLx4U8er/8ea/cdNWUNEHA4/3ZpiZFyaCa3CcD6uwtr6xuVXcLu3s7u0flA+POlqmirI2lUKqbkg0EzxmbeAgWDdRjEShYLfh9DL3b++Z0lzGNzBLWBCRccxHnBIwUicdZB7MB+WKY180ap5fw47tOHXXc3Pi1f2qj12j5KigFVqD8nt/KGkasRioIFr3XCeBICMKOBVsXuqnmiWETsmY9QyNScR0kC2uneMzowzxSCpTMeCF+n0iI5HWsyg0nRGBif7t5eJfXi+FUSPIeJykwGK6XDRKBQaJ89fxkCtGQcwMIVRxcyumE6IIBRNQyYTw9Sn+n3Q8263a3rVfaeJVHEV0gk7ROXJRHTXRFWqhNqLoDj2gJ/RsSevRerFel60FazVzjH7AevsE+xaPTA==</latexit>

alarm

I2t
<latexit sha1_base64="iMpVc4flW+qZWXMu14k+97pxiP4=">AAAB7XicdVDLSsNAFJ34rPVVdelmsAquQpKGtu4KbnRXwT6gDWUynbRjJzNhZiKU0H9w40IRt/6PO//GSVtBRQ9cOJxzL/feEyaMKu04H9bK6tr6xmZhq7i9s7u3Xzo4bCuRSkxaWDAhuyFShFFOWppqRrqJJCgOGemEk8vc79wTqajgt3qakCBGI04jipE2Uvt6kHl6NiiVHfuiXvX8KnRsx6m5npsTr+ZXfOgaJUcZLNEclN77Q4HTmHCNGVKq5zqJDjIkNcWMzIr9VJEE4QkakZ6hHMVEBdn82hk8M8oQRkKa4hrO1e8TGYqVmsah6YyRHqvfXi7+5fVSHdWDjPIk1YTjxaIoZVALmL8Oh1QSrNnUEIQlNbdCPEYSYW0CKpoQvj6F/5O2Z7sV27vxy43TZRwFcAxOwDlwQQ00wBVoghbA4A48gCfwbAnr0XqxXhetK9Zy5gj8gPX2Cbi+jyQ=</latexit>

I2t+1
<latexit sha1_base64="Hgh9gE/MC68pzTYvorPQaEq75yo=">AAAB73icdVDLSgNBEOyNrxhfUY9eBqMgCGF3syTxFvCitwjmAckSZiezyZDZhzOzQljyE148KOLV3/Hm3zibRFDRgoaiqpvuLi/mTCrT/DByK6tr6xv5zcLW9s7uXnH/oC2jRBDaIhGPRNfDknIW0pZiitNuLCgOPE473uQy8zv3VEgWhbdqGlM3wKOQ+YxgpaXu9SC11bk1GxRLZvmiXrWdKjLLplmzbCsjds2pOMjSSoYSLNEcFN/7w4gkAQ0V4VjKnmXGyk2xUIxwOiv0E0ljTCZ4RHuahjig0k3n987QqVaGyI+ErlChufp9IsWBlNPA050BVmP528vEv7xeovy6m7IwThQNyWKRn3CkIpQ9j4ZMUKL4VBNMBNO3IjLGAhOlIyroEL4+Rf+Ttl22KmX7xik1TpZx5OEIjuEMLKhBA66gCS0gwOEBnuDZuDMejRfjddGaM5Yzh/ADxtsnkjSPlA==</latexit>

Figure 2: DiverseAV approach overview.

because the pixel values and hence the bits representing that
pixel can change significantly between subsequent frames due
to shifts in object locations.

Error detection via time-multiplexing. Time-multiplexing
enables detection of hardware errors that propagate from
hardware to the software state and subsequently impact the
AV dynamics and safety. Time-multiplexing of the sensor data
between the DiverseAV-enabled agents detects a wide range
of SDCs, since faults either impact a single agent or impact
individual agents differently. A fault manifestation in each
agent may be different because each agent consumes diverse
(though semantically similar) data inputs and maintains its own
private state.

C. Model formulation

Here we present the mathematical abstraction of our system.
An ADS can be abstracted using (1). ut is the actuation output
produced by autonomous software (expressed as f) at time t
using sensor data input It on a processing element (expressed
as h). Let f0 be the instantiation of f .

ut = h(f0, It) (1)
Given an ADS that is well designed and trained and receives

semantically similar data over a small rolling window of size
rw, the average difference between adjacent actuation values
over the rolling window of size rw are small and bounded,
i.e.,

∑t=k+rw
t=k ||ut+1−ut||/rw ≤ δ as seen in Fig. 2(3)(a). It

is plausible to develop a monitor to find anomalies in the
timeseries data measuring δ to detect errors but such a monitor
is noisy leading to high false positive rates as discussed in
§VI-C.

In comparison, DiverseAV-enabled ADS can be modeled by
(2), in which the data is distributed to the agents 0 and 1, each
of which execute function f , in round-robin fashion using a
‘sensor data distributor’. Here, 1t=2k and 1t=2k+1, where k is
a non-negative integer (k ∈ Z≥0), are indicator functions that
activates on even (t = 2k) and odd (t = 2k + 1) time steps
respectively.

ut = 1t=2kh(f
0, It) + 1t=2k+1h(f

1, It), k ∈ Z≥0 (2)
(1) and (2) are equivalent iff the composite function h(f) is

stateless, but, in practice, h(f) is not stateless. However, (2)
approximates (1) when the operating frequency of the ADS
tends to infinity. This is because semantically It and It+1 are
similar even though It and It+1 are not similar at the bit-
representation level, i.e., ||w(It+1)− w(It)|| → ε, where w is
a function that extracts the semantic meaning from the image
(e.g., bounding box of the objects or position of the object in the
world), and ε is bounded and small. This is a fair assumption
because practical implementations of ADSes operate at high
frequencies (10-100Hz). However, this assumption is violated
when the hardware is faulty. Under faulty hardware (expressed
as hτ), a DiverseAV-enabled ADS can be represented by (3) l

uτt = 1t=2kh
τ (f0, It) + 1t=2k+1h

τ (f1, It), k ∈ Z≥0 (3)
Previous research [24], [42] as well as our own empirical

demonstration of DiverseAV have shown that a faulty hardware
(hτ) executing an application produces significantly different
outputs even when using semantically similar inputs when the
input data is diverse. In our case, the input data is diverse
at the bit level which is quantified in §V-A. Because of this
diversity, the average error between adjacent actuation outputs
produced by the two agents over a rolling window of size rw

4

is neither small nor bounded, i.e.,
∑t=k+rw
t=k ||uτt+1−u

τ
t ||/rw > δ;

thereby, enabling us to detect the error using a statistics-based
‘Error Detection’ engine.

D. Design Overview & Implementation

Fig. 2 shows the overall design (and envisioned deployment)
of DiverseAV (1). The modifications to the original ADS
system are highlighted in boxes with dashed blue outlines. To
enable time-multiplexing between the agents, we introduce a
“sensor data distributor” and an “error detection and control
fusion engine.”

Sensor data distributor takes the sensor data as inputs (It)
and round-robins the input data among the two agents, thereby
reducing the sensing frequency for each agent by 50%. For
example, it splits the input data It such that agent 0 receives the
input data It=2k and agent 1 receives the input data It=2k+1,
where k is a non-negative integer (k ∈ Z≥0). This decrease in
sensing frequency of each agent by half is disadvantageous as
it may have a negative consequences for AV safety because
it reduces the accuracy of available history for making the
driving decision, which may lead to an increase in uncertainty
or delayed response (e.g., uncertainty in a planner response).
However, in [25], the commercial ADS was shown to be safe
even with a sensing frequency that is much lower than the
nominal rate because commercial ADS’s include a significant
engineering margin5. For example, across all driving scenarios,
authors were able to decrease the sensing frequency by 3×,
i.e., from 30 Hz to 10 Hz, safely.

Given the safety margin, DiverseAV can afford the data
distribution strategy, which has several advantages: it ensures
that each agent uses semantically similar sensor data to compute
the actuation decision while providing significant data diversity
at the bit level for the two agents. As can be seen from Fig. 2
(2), the camera frames captured at two consecutive time steps
t and t + 1 are semantically very similar; however, when
they are compared at the bit level, their data are significantly
different. For example, when the 24-bit RGB color value (8-bit
per color) for a given pixel at location X changes from 95
(for each color at time t) to 96 (at time t+ 1), the data at the
bit-level changes by 18 bits. We evaluate this temporal data
diversity in detail in §V-A and show that the median number
of bit difference per pixel location between successive camera
frames is 8 bits. Thus, the sensor data distributor provides the
much-needed data diversity to enable error detection. However,
it also introduces several complications, such as ones related
to synchronization and selection of the actuation decisions
produced by each agent.

Control fusion engine is responsible for synchronization of
actuation decisions between the two agents. Recall from §II that
ADS fuses the sensor data spatially and temporally to produce
actuation decisions and drive the vehicle in the real world.
Depending on the ADS design, sensing and actuation can be
(i) a lockstep process (i.e., an actuation decision is produced
only after all inputs have been received, leading to the same
sensing and actuating frequency as the original single agent
system), as in the case of the Sensorimotor agent (described
later in §IV); or (ii) an asynchronous process, as in the case of
Baidu’s Apollo agent [36]. The Apollo agent uses an array of

5For an ADS with lower engineering margins, the sensor data distribution
can be adjusted so that some input data is sent to both agents, thus resulting
in a input data rate reduction less than 50%, albeit at the expense of greater
performance overhead.

sensors that post data at different frequencies (20 Hz cameras,
50 Hz radars, 100 Hz GPS and IMU (Inertial Measurement
Unit), and 10 Hz LiDAR) to create an internal model of the real
world and continuously update the internal world model. The
planning and actuation model asynchronously uses the internal
world model to produce the actuation decision at 100 Hz.
Implementation of DiverseAV for the above-mentioned lockstep
design is straightforward: DiverseAV can use the actuation
decision of the agent that received the sensor data. However,
implementing DiverseAV for an asynchronous design can be
challenging: with two agents, DiverseAV doubles the number
of actuation decisions produced by the ADS. Furthermore,
enforcing an ordering of the actuation decisions across the
agents is not trivial. Therefore, for an asynchronous system,
DiverseAV can either (i) use an actuation decision from only
one of the agents and use the actuation decision of the other
agent solely for the purposes of error detection, or (ii) use the
actuation decisions of both agents by averaging the actuation
decisions produced by the replicas.

Fig. 2(3) shows the vehicle “throttle” actuation command
value and CVIP distance (“closest-vehicle-in-path,” described
in §II) for the original system when it is using a single agent
and DiverseAV-enabled ADS for the lead-slowdown driving
scenario in which the lead vehicle is slowing down. Although
the actuation decisions produced by DiverseAV-enabled ADS
diverge from those of the original ADS (i.e., the single agent
system) by a small amount, the CVIP distance shows negligible
divergence. These results are described in §V-B in more detail.

Error detection engine. In a fully duplicated system since
the agents are consuming the same input data the outputs can
be compared directly using algebraic subtraction 6. An alarm
is raised if the subtraction yields a nonzero value. However,
such systems are hard to design and implement. Designing
such a system requires synchronization of the outputs at the
instruction level, which is prohibitively costly. In contrast,
our time-multiplexed redundant design leverages data diversity
to detect safety-critical faults with marginal decrease error
detection coverage while increasing the system availability,
lowering the design complexity and significantly reducing the
resource overhead compared to the fully duplicated systems.
However, designing the error detection logic for DiverseAV
becomes challenging as the diversity in the inputs and internal
software state of the two agents leads to outputs that are not
a bit-by-bit match. Thus, the challenge is to design a robust
error detector that provides high detection accuracy, coverage
and lead detection time. The detection accuracy is measured in
terms of precision (#True Positives/#True Positives + #False Positives) and
recall (#True Positives/#Positives). The lead detection time is the
difference between the alarm generation time and the collision
time. An error detector with a higher lead detection time allows
the ADS to switch over to fail-safe mode earlier.

We use statistical techniques to address the above-mentioned
error detection challenge in DiverseAV. Fig. 2(4) depicts
the impact of a permanent GPU fault on the original ADS
and DiverseAV-enabled ADS for the lead-slowdown driving
scenario. One can observe that the throttle values are different
in the faulty run (Fig. 2(4)(a)) and a non-faulty run (shown in
Fig. 2(3)(a)). Since the impact of the fault is smoothed by the

6Note that depending on the granularity at which a fully duplicated system
is synchronized the outputs may or may not be directly comparable. Here we
assume that the duplicated system is synchronized at the processor instruction
level. Later in §VI-B we discuss other synchronization granularities.

5

PID controller, there are no visible anomalies in the throttle
values for the original single-agent system (Fig. 2(4)(a)).
However, one can see visible divergence between the outputs of
the two agents in the DiverseAV-enabled ADS (Fig. 2(4)(b)).

Training error detection engine. DiverseAV uses a rolling
window-based error detection algorithm to learn the maximum
divergence between the actuation outputs of the two agents,
and uses that divergence as a threshold to detect errors at
runtime. We ensure that DiverseAV is not tuned to any specific
scenarios or faults by training the error detection engine (i)
using the long training scenarios, described in §IV, which is
different from our evaluation scenarios (e.g., it does not include
emergency braking or accidents), and (ii) by executing these
scenarios under fault-free conditions.

At runtime, DiverseAV uses the learned divergence param-
eters to detect a safety-critical fault. Upon detection of an a
safety-critical fault, an alarm is raised, and DiverseAV triggers
a fail-back system with sufficient capabilities to handle the
driving situation, e.g., safely park the vehicle. The rolling
window-based error detector uses the following parameters:

(i) θthrottle(s), θbrake(s), and θsteer(s): DiverseAV raises an
alarm if the difference between the actuation command
values of the two agents exceeds a certain threshold at a
given vehicle state s (given by tuple 〈v, a, ω, α〉, where v
is speed, a is acceleration, ω is angular velocity, and α is
angular acceleration). We use 〈v, a〉 to represent the state for
θthrottle(s), θbrake(s), since the throttle and brake depend
on linear speed and acceleration. Similarly, we use 〈ω, α〉
to represent the state for θsteer(s).
We discretize each of the variables (i.e., 〈v, a, ω, α〉) of the
vehicle state s into small intervals and learn the thresholds
for each of these intervals. The thresholds are learned by
calculating the maximum difference between the actuation
command values for the two agents across all executions
of reference driving scenarios for a given vehicle state (s).
The thresholds learned are stored in a lookup table (LUT),
which is used at runtime for detection.

(ii) rw: The two agents in DiverseAV naturally produce slightly
different actuation command values because they are con-
suming diverse data, and the divergence is highest when
the planning decision changes between two time steps
(e.g., from slowing down to accelerating). However, such
high divergence in actuation is transient. Therefore, to
avoid identifying occasional blips as errors, we use a
rolling window (rw–rolling window size) to smooth out
the difference in actuation command values produced by the
two agents. The rw parameter may impact the lead detection
time. We vary the rolling window from 3 all the way to
40 recently received sensor data, as 40 Hz is the sensor
frequency of our simulator, and select the parameters with
maximum F1-score (harmonic mean of precision and recall).

IV. EXPERIMENTAL SETUP

This section describes the autonomous agent, simulation
platform, driving scenarios, data collection methods, and fault
injection methods used in our experiments. Hereafter, we refer
to the agent-controlled vehicle as “the ego vehicle" and the
other vehicle in a scenario as “NPC (non-player character)".

A. Autonomous Agent
This work uses the state-of-the-art convolutional neural net-

work (CNN)-based end-to-end autonomous agent proposed and

Hardware Platform (CPU, GPU, RAM)

Ubuntu 18.04

CARLA Simulator

Docker

Scenario Manager

Native OS

Agent 0

Agent 1

Sensor Interface

Campaign Manager

Injection Plan
Generator & Driver

Agent Stack

Injector

Data

Figure 3: DiverseAV assessment platform.

pretrained by Chen et al. [27], referred to as the Sensorimotor
agent. The main components of the agent are the High-level
Route Planner, CNN, Waypoints Tracker, and Control Unit.
High-level Route Planner is responsible for finding the next
“destination-to-go” navigation direction. Convolutional Neural
Network (CNN) is a vision-based local planner, and is the core
of the Sensorimotor agent. The CNN consumes data from three
front-facing cameras and predicts the path that the ego vehicle
should follow by outputting four local-waypoints for each time
step. Waypoints Tracker along with the Control Unit uses the
local waypoints, the IMU and GPS data, and a PID controller
to produce actuation outputs at each time step.

B. Simulation Platform
We cannot use real-world data (such as KITTI dataset [43],

[44]) to evaluate DiverseAV as the fault may impact the
future ego vehicle trajectory, and therefore, the subsequent data
captured via the sensors. Thus, in this work, we use a world-
simulator to simulate the driving scenarios. An overview of our
world-simulation platform is shown in Fig. 3. We use CARLA
0.9.10 [28], an Unreal Engine-based simulator, to simulate
complex and realistic 3D environments for autonomous driving.
We ran the CARLA simulator in synchronous mode with all
sensor data (from 3 front-facing cameras (facing left, center,
and right) and GPS and IMU) posted at 40 Hz.

The DiverseAV-enabled ADS consists of two Sensorimotor
agents, a sensor interface for communication with the simulator,
and a scenario manager that manages the driving scenario. The
two agents can be configured to run in round-robin mode (i.e.,
agents receive sensor data at alternating time steps) , duplicate
mode (i.e., both agents receive all sensor data), or single mode,
in which only agent 0 is active.

Before the simulation is started, the Scenario Manager sends
the driving scenario to the CARLA simulator. The Campaign
Manager reads experiment configurations and launches the
Injection Plan Generator that selects the injection site (CPU
vs. GPU), the fault model (transient vs. permanent) and agent
mode (single, duplicated, or DiverseAV) for an experiment.
The Driver invokes the simulator with the selected agent mode
and the selected fault injector. The Campaign Manager takes
approximately 10 minutes to run one experiment which includes
setting up the agents, the simulator, executing the test driving
scenario, selecting and injecting faults, and collecting the data.

C. Driving Scenarios
1) Safety-critical (Test) Scenarios: We created three safety-

critical test scenarios, shown in Fig. 4. Scenarios of these
kinds are considered high-risk by the National Highway Traffic
Safety Administration (NHTSA), as stated in their pre-collision

6

AI-Vehicle Lead NPC Braking AI-Vehicle Ghost NPC Cut in AI-Vehicle NPC Vehicles Collision

Figure 4: Driving scenarios. Left: lead slowdown. Middle: ghost cut
in. Right: front accident. Red car: AI-vehicle, Blue Car: NPC-vehicle.

scenario topology report [34]. The safety-critical scenarios are
about 30-60 seconds long on wall clock7 and capture the most
critical moments of autonomous driving. We used these safety-
critical scenarios in fault injection experiments to evaluate the
the efficacy of detecting safety-critical faults.

Lead Slowdown: As shown in Fig. 4 (left), the ego vehicle
(red) follows a leading NPC vehicle (blue), maintaining
a distance of 25 meters. The NPC vehicle then performs
emergency braking to slow down. The ego vehicle needs to
recognize the situation and brake in time to avoid a collision.
This is both a common and a high-risk scenario. Lead slowdown
scenario is dangerous because it gives the follower vehicle little
time to react, often resulting in a rear-end collision with the
leading vehicle.

Ghost Cut in: As shown in Fig. 4 (middle), the ego vehicle
(red) is maintains a constant speed, and an NPC vehicle (blue)
approaches from the left adjacent lane. The NPC vehicle then
cuts in front of the ego vehicle with a small longitudinal
margin. The ego vehicle needs to reduce the throttle, slow
down, and brake if necessary to avoid colliding with the side
of the NPC vehicle. In this driving scenario, there is little to
no warning prior to the cut-in maneuver of the NPC vehicle.
This is especially dangerous for the ego vehicle as our agent
does not use a rear-end camera, resulting in less time to see
the NPC vehicle and react to avoid a collision.

Front Accident: As shown in Fig. 4 (right), the ego vehicle
(red) is following a leading NPC vehicle (gray) in the same
lane, and another NPC vehicle (blue) in the adjacent lane
tries to merge but crashes into the leading NPC vehicle. Both
NPC vehicles’ trajectories suddenly change because of their
collision, and both NPC vehicles stop subsequently. The ego
vehicle needs to recognize this rapidly changing situation and
stop in time to avoid an accident with the two collided NPC
vehicles. Although a scenario with accident is rare, it is a
high-risk situation because the ego vehicle might not recognize
the abrupt change in the perspective and the trajectory of the
leading NPC vehicle and makes the wrong decision.

2) Long (Training) Scenarios: We constructed three long
scenarios for training the error detector of the DiverseAV-
enabled ADS. Our results, described in §V, show that the error
detector parameters can be learned from these long driving
scenarios with high precision and recall in detecting safety-
critical faults. The long scenarios are based on selected routes
from the 2020 CARLA Autonomous Driving Challenge [33],
simulating normal, everyday driving tasks, such as vehicle
following, lane keeping, turning, lane changing, and handling
of intersections. We also enabled pseudo-random background
traffic (consistent across all experiments of each scenario)
with a fixed random seed for each run. Each driving scenario
simulation time is approximately 10–15 minutes long. The
three long scenarios are based on Route02, Route15, and
Route42, which are set in CARLA Town01, Town03, and
Town06, respectively. These long scenarios require the AV to
navigate in city and highway with dense traffic consisting of

7The simulation time corresponding to 30-60 seconds of driving is as high
as 5-10 minutes on the wall clock time.

turns, intersections, and traffic lights.

D. Fault Injection
We inject hardware faults by injecting architectural-level

GPU or CPU errors that emulate consequences of underlying
transient or permanent faults as discussed in §II-B. In particular,
we use PinFI [30], [45] to inject faults into the CPUs, and
NVBitFI [29], [41] to inject faults into the GPUs. We configure
the fault injection tools so that they only affect the ADS (the
agents in Fig. 3). Table I summarizes the results of the fault
injection experiments on DiverseAV-enabled ADS.

GPU fault injections. We conduct the following GPU FI
experiments. (i) Transient FI: It is prohibitively expensive to
inject all possible transient faults as the possible space of
transient faults is extremely large. Therefore, we uniformly
randomly selected 500 candidate dynamic instructions to
transiently corrupt the destination register, with one fault per
simulation run. (ii) Permanent FI: For permanent faults, we, we
inject all dynamic instances of the target opcode for a particular
run. The ISA (Instruction Set Architecture) of the Titan Xp
GPU includes 171 opcodes, and for each of the three driving
scenarios we perform fault injection for all 171 opcodes, with
three repeated runs per opcode to capture any non-deterministic
effects, resulting in 513 experimental runs per driving scenario.
In total, the fault injection campaigns on GPUs, which includes
both transient and permanent fault injection on all scenarios,
lasted for 21 days.

CPU fault injections. We conduct the following CPU
FI experiments. (i) Transient FI: Similar to the GPU FI
experiments, we uniformly randomly select 500 candidate
dynamic instructions and transiently corrupt the destination
register. (ii) Permanent FI: The Sensorimotor agent uses 131
Intel opcodes, and for each of the three driving scenarios we
perform fault injection for all 131 opcodes, with three repeated
runs per per opcode to capture any non-deterministic effects.
We also perform injection of CPU faults using a modified
version of PINFI to support a permanent fault model that is
similar to the permanent fault model for NVBitFI, where all
dynamic instances of a specified opcode are corrupted, resulting
in 393 experimental runs per driving scenario. In total, the fault
injection campaigns on CPUs, which includes both transient
and permanent fault injection on all scenarios, lasted for 18.6
days.

In addition we run 50 experiments per scenario without fault
as “golden" runs. The golden runs serve as control experiments
as the error detector must not classify any of these runs as
faulty. An error detector which falsely classifies a golden run
as erroroneous will trigger frequent alarms, thereby decreasing
the overall system availability. Finally, our experimental setup
uses a XEON E5-2699v4 CPU with 64 GB of RAM and two
Titan Xp GPU cards.

V. RESULTS

A. Sensor Data Diversity and Semantic Consistency
We characterize the diversity in the sensor data between

two consecutive time steps of autonomous driving on both the
simulated sensor data generated by CARLA Simulator [28] for
our test scenarios (§IV-C) and the KITTI dataset [43], [44]. The
KITTI dataset is a real-world dataset for autonomous driving
recorded in various scenarios representing real-world traffic
from both urban and highway-driving with many static and
dynamic objects. The KITTI dataset consists of data captured by

7

0 20
Bit diversity

0.00

0.05

0.10

P
D

F

(a) Real-world data from
the KITTI dataset.

0 10 20
Bit diversity

0.00

0.05

0.10

0.15

P
D

F

(b) Simulated data from
the CARLA simulator.

Figure 5: Image pixel bit diversity.

multiple sensors and object labels, including two front-facing
cameras, one Velodyne 64-channel LiDAR, one IMU+GPS
sensor, and ~200k 3D object labels. The sensing frequency is
10 Hz for all sensor data.

The camera data diversity at the bit level is calculated per
pixel by counting the number of bits that are different at a
given pixel location between consecutive RGB camera images.
Such a calculation is done for all pixel locations, resulting in a
distribution. For KITTI dataset, the bit diversity of the camera
data is 8 bits and 13 bits out of the 24-bit RGB pixel (8 bits
per channel) at the 50th and 90th percentile, respectively (Fig.
5a). Further evaluation shows that the bit diversity remains
high for other sensor data. The bit diversity of the IMU+GPS
data (using 32-bit floating points) is 11 bits and 15 bits at
the 50th percentile and 90th percentile, respectively. The bit
diversity of the LiDAR data (using 32-bit floating points) is 14
bits and 18 bits at the 50th and 90th percentile, respectively.

The above characterization on bit diversity holds for
simulator-generated dataset also. We evaluate the bit diversity
of CARLA simulator-generated sensor data captured from the
three front facing cameras running at 40 Hz (the primary data
consumed by Sensorimotor agent) on the test (safety-critical)
scenarios. The bit diversity of simulator-generated camera data
is 5 bits and 9 bits out of the 24-bit RGB at 50th and 90th
percentile, respectively (Fig. 5b). We omit the detailed analysis
for other simulator-generated sensor data due to lack of space.

Moreover, we estimate the semantic consistency of the sensor
data of the KITTI data set between two consecutive time steps.
For the camera data, we calculate the shift of the object center
in pixel coordinates per object between two consecutive frames
using the ground-truth 2D bounding box labels from KITTI’s
object tracking task [44]. Our results show that the pixel shift of
the bounding box center between two consecutive frames is 5
and 22 pixels at the 50th and 90th percentile, respectively, with
the maximum possible shift being ~1296 pixels (the diagonal of
a 1240x376 KITTI camera frame [44]). For the LiDAR sensor
data, we calculate the shift of the object center in the ego
vehicle’s coordinate frame per object between two consecutive
frames using the ground-truth 3D object center label [44]. Our
evaluation shows that the object’s position difference in the
ego vehicle coordinate is 0.48 and 1.26 meters at the 50th and
90th percentile, respectively, with the maximum possible shift
being 240 meters (the LiDAR’s effective range [43]).

These results validate our assumptions and show that even
though the semantics meaning of the sensor data does not
change significantly between two consecutive time steps, the
bit-representation can change considerably.

B. Impact of DiverseAV on Safety
Here we characterize the impact of the DiverseAV-enabled

ADS on the vehicle’s safety by evaluating the maximum

orig.
ours

GhostCutin

0.0

0.2

0.4

δ p
o
s

(m
)

orig.
ours

LeadSlowdown

0.0

0.2

0.4

orig.
ours

FrontAccident

0.00

0.05

0.10

Figure 6: Impact on vehicle trajectory for a single instance
(orig) and with DiverseAV (ours).

divergence between the trace of the vehicle trajectory (traj) of
an experimental run of a driving scenario generated using the
DiverseAV-enabled ADS and the baseline trajectory generated
using the original single-agent ADS. The vehicle trajectory of
an experimental run of a driving scenario is the trace of the
path followed by the vehicle. Formally, it is a timestamped
list containing the global position (in terms of <x,y,z> co-
ordinates) of the vehicle at any time t on the map during the
execution of that driving scenario, i.e., traj = [post|∀t]. We
express the maximum divergence between a given trajectory
(trajE) and the baseline trajectory (trajB) as δE,Bpos , where
δE,Bpos = max(trajE − trajB).

Fig. 6 shows the boxplot of δE,Bpos across three safety-critical
driving scenarios, calculated using 50 experimental runs (golden
runs) of the scenarios. We characterize the divergence among
the vehicle trajectories generated using the original ADS as
well as the DiverseAV-enabled ADS. The baseline trajectory
trajB used for calculating δE,Bpos for a given driving scenario
was chosen as the mean of all the golden trajectories generated
using the original ADS. Thus, the boxplots labeled “orig” show
the distribution of the maximum divergence for the vehicle
position across the experimental runs of a driving scenario when
the vehicle was using the original ADS. Similarly, the boxplots
labeled “ours” show the maximum divergence for the vehicle
position among experimental runs when the vehicle was using
the DiverseAV-enabled ADS with respect to the mean of the
trajectories generated by the original ADS. Our characterization
shows that the maximum divergence between the vehicle
trajectories was <50 cm across all scenarios when we used
the DiverseAV-enabled system instead of the original ADS.
Note that the divergence was mostly observed longitudinally
rather than laterally. Hence, the maximum observed divergence
is significantly less than the distance that the vehicles must
maintain with other actors (as dictated by the law) to avoid
accidents. For example, drivers should follow 3-second rule to
always try to maintain a 3-second following distance whenever
possible; providing sufficient space for emergency braking [46].

Moreover, the DiverseAV-enabled vehicle neither experi-
enced a collision nor broke any traffic laws in any of our
experimental runs across the driving scenarios. Based on those
observation, we conclude that our proposed design is safe and
mimics the vehicle trajectory of the original ADS closely.

C. Characterizing Fault Propagation

Table I provides an overall summary of the experiments. Each
row in the table shows the statistics for one fault injection
(FI) campaign, which is characterized by a fault injection
target and the driving scenario. In total, we executed twelve
FI campaigns in which we injected faults into two targets
(CPU and GPU) in three driving scenarios (LeadSlowDown,
GhostCutin, and FrontAccident). We also used three additional

8

FI Target DS #Active,
Hang/Crash,
Total FI

#Acc. #Traj. Vi-
olations*

GPU-permanent LSD 513, 83, 513 3 9
GPU-permanent GC 513, 83, 513 14 2
GPU-permanent FA 513, 81, 513 0 3
CPU-permanent LSD 393, 287, 393 0 0
CPU-permanent GC 393, 286, 393 0 0
CPU-permanent FA 393, 287, 393 0 0

GPU-transient LSD 500, 40, 500 0 2
GPU-transient GC 500, 46, 500 0 2
GPU-transient FA 500, 39, 500 2 0
CPU-transient LSD 413, 171, 500 0 0
CPU-transient GC 203, 70, 500 0 0
CPU-transient FA 452, 199, 500 0 0

Table I: Summary of experimental runs in DUAL agent mode.
DS: Driving scenarios (LSD - Lead Slowdown, GC - Ghost Cut
in, FA - Front Accident scenarios); #active: # of FI experiments
in which fault was successfully injected; #Traj Violations*: #
of experiments with trajectory violation but without accident.
Here we assume that the trajectory violation occurs when the
maximum divergence between the experimental run of a driving
scenario with FI enabled and the baseline trajectory exceeds
2m. #Acc.: # of experiments with accident.

training driving scenarios (Town01-Route02, Town03-Route15,
and Town06-Route46) to train our error detector (not mentioned
in the table). For each of the campaigns, we ran 50 golden
runs (i.e., experimental runs without fault injections) to (i)
characterize the simulation’s non-determinism, (ii) understand
the impact of faults on the vehicle’s safety, and (iii) test the error
detector. Across all the FI campaigns, we quantify the safety
of the vehicle in terms of accidents and trajectory violations.
We marked an experimental run (E) as “trajectory violated”
if δE,Bpos ≥ td (i.e., the maximum divergence between the
trajectory of the experimental run (E) and the baseline run
(B) is more than td, where td is a parameter). We evaluate
the sensitivity of the parameter td on the detection capabilities
of our proposed design. The trajectory of the baseline run is
calculated as the mean trajectory of all the golden runs. Note
that the “baseline” trajectories are generated by taking the
means of the golden runs of the original ADS in §V-B, while
in this subsection and §V-D, the “baseline” trajectories are
generated by taking the mean of the golden runs of DiverseAV-
enabled ADS under fault-free condition.

Transient faults. Across all transient faults, CPU FI resulted
in (i) highest percentage of hangs and crashes of the ADS
software (41.2%; 440 out of 1068 runs8), and (ii) zero accidents
and trajectory violations. A high percentage of hangs and
crashes are expected for CPU FI campaigns because FI into
CPU instructions is very likely to corrupt the program control
flow or memory addresses, resulting in segmentation faults and
broken pipes, among other problems. Hangs and crashes are
automatically detected by the platform, thereby triggering the
fail-back system which can bring the vehicle to a safe state.
CPU FIs do not cause silent data corruption (SDC) because the
Sensorimotor agent used in our work uses the GPU mostly for
computations, whereas it uses the CPU for loading and setting
the Pytorch program. Consequently, we observed a relatively
low percentage of hangs and crashes for GPU transient faults
(8.3%; 125 of 1500 runs). Transient faults into GPU did lead

8The statistics is calculated by dividing total number of hangs and crashes
in Table I in column 2 for CPU-transient faults and total number of fault
activated experiments.

3 5 10 20 30 40
Rolling window size

1
2

3
4

5
T

ra
je

ct
or

y
d

iff
er

en
ce

0.8

0.9

(a) Precision.

3 5 10 20 30 40
Rolling window size

1
2

3
4

5
T

ra
je

ct
or

y
d

iff
er

en
ce

0.7

0.8

0.9

(b) Recall.
Figure 7: Detecting safety-critical GPU faults.

to accidents and trajectory violations (0.4%; 6 out 1500 runs).
Permanent faults. We observe similar trends for permanent

faults for CPUs and GPUs except for the fact that permanent
faults resulted in significantly more hangs/crashes and acci-
dents/trajectory violations. CPU FI resulted in (i) the highest
percentage of hangs and crashes (72.9%; 860 out of 1,179
runs), and (ii) zero trajectory violations and accidents. Similar
to transient FI, we observed a relatively low percentage of
hangs and crashes (16%; 247 out of 1,539 runs) in the case of
GPU FI as compared with CPU FI, and a high percentage of
accidents (1.1%; 17 out of 1,539 runs) and trajectory violations
(with no accident) (0.9%; 14 out of 1,539 runs).

D. Characterizing Error Detection Capabilities
DiverseAV must be able to detect all safety-critical errors, i.e.,

faults that lead to a collision or significant trajectory divergence.
In addition, it should not raise false alarms, especially for the
golden runs (experimental runs of driving scenarios without
fault injection). We evaluate error detection capabilities in
terms of precision, recall, and lead detection time. Moreover,
we parameterize the trajectory divergence using the parameter
td. We mark an experiment as “trajectory violated” if δE,Bpos ≥
td, i.e., if the max difference between the experimental run
of a driving scenario and the baseline trajectory exceeds td.
This parameter impacts the number of cases that need to be
detected by the DiverseAV. We evaluated DiverseAV’s detection
capabilities for td = 1, 2, 3, 4, 5 meters. The simulations of the
driving scenarios have inbuilt non-determinism, and, as shown
in Fig. 6, the natural variation in trajectory can be as high as
50 cm; therefore, we chose td > 50 cm.

We omit the results for CPU faults as all the CPU faults
were either detected by platform (i.e., OS or Scenario Manager)
as hangs or crashes or did not result in accidents or trajectory
violations. Since the undetected faults by the platform did
not result in any safety violation, we institute a simple policy
in which DiverseAV generates an alarm if it detects a hang
or crash. Because we did not observe any SDCs, we cannot
estimate the efficacy of DiverseAV in detecting SDCs. However,
we expect the contribution of CPU faults to the total SDC FIT
rate to be small.

Going forward we only discuss the error detection capabil-
ities of DiverseAV for GPU faults as undetected GPU faults
lead to safety violations. We trained and tested DiverseAV on
different scenarios to understand the generality of the proposed
design. DiverseAV was trained using “long driving” scenarios
and tested on safety-critical scenarios. Fig. 7a and Fig. 7b
show heat maps of the precision and recall values for our
error detector across different parameters of td and rw (rolling
window size). Overall, we found that the DiverseAV’s detector
robustly detected the safety-critical faults and produced a low
false positives rate across a range of parameters (td ≥ 2

9

5 10
Lead detection time (s)

10

20

#
S

a
fe

ty
-c

ri
ti

ca
l

ex
p

s.

Figure 8: GPU FI lead detection time. In this plot, at any
point (x,y), y is the total number of safety-critical experiments
in which the lead detection time is <= x seconds.

CPU GPU RAM VRAM

Single Agent 4% 14% 431 MB 198 MB
DiverseAV 5% 15% 862 MB 396 MB
FD∗ 4% 14% 862 MB 396 MB

Table II: Average system resources used by single-agent,
DiverseAV-enabled and fully duplicated (FD) ADS. ∗: CPU
and GPU utilization are per processor for FD.

and rw ≤ 30). The best performance (i.e., precision =
0.87 and recall = 0.87) was achieved with td = 2 and
rw = 3. Thus, DiverseAV generates few false positive alarms
and detects majority of the safety violation causing faults;
thereby improving the overall safety of the system. Moreover,
DiverseAV did not raise an alarm for any of the golden runs
of the driving scenarios for these parameters, which means
the false positives are cases in which a fault did occur but
did not result in any safety violation (i.e., accident or td > 2).
Fig. 8 shows the lead detection time for the detector using
the parameters td = 2 and rw = 3. The lead detection time
is significantly higher than 1.0 second. [6], [47] found that
the reaction time of braking for humans and AVs to be 0.82
seconds and 0.85 seconds respectively. Therefore, DiverseAV
provides sufficient time to take control and react to the driving
situation at hand for humans or a fail-back system.

The above results indicate that our approach achieves high
recall and precision in detecting runtime errors. In the context
of an ADS, high recall and a corresponding low false-negative
rate are important because they indicate that most faults are
being detected or they do not affect the vehicle behavior. When
an error is detected, the vehicle fails over to a backup system
that brings the vehicle to the safe state.

E. Performance Overhead

A summary of performance overhead is shown in Ta-
ble II. The performance overhead characterization shows
that DiverseAV increased compute utilization marginally and
significantly increased (by 2×) the memory utilization. That
is expected because of the two agents employed in DiverseAV
maintain their own internal (private) state. Memory usage
(for both CPU and GPU) doubled as expected for DiverseAV
compared to the single-agent system and was the same
compared to the fully duplicated (FD) system. DiverseAV
used slightly more compute resources than the single-agent
system. Compared to the FD system, DiverseAV averaged the
same compute utilization on a per-processor basis. However,
the FD system requires double the number of CPUs and GPUs.

Although the compute resource utilization is low for the
Sensorimotor agent used in this paper, we know from our
experience that compute utilization for a real-world AV is high,
requiring multiple CPUs, GPUs, and FPGAs [37].

VI. DISCUSSION

A. Assumption of independence of agents and its impact on
error detection coverage.

A key assumption of DiverseAV is the implementation of
the two agents as separate processes executing on the same
processor. Thus, an error in one agent cannot directly affect
the other. An error could affect the operating system, which
in turn could affect both agents, but such errors would most
likely result in either crashes or hangs. Hence, the assumption
is that transient hardware faults can only affect a single agent.
Permanent faults would affect both agents, but our evaluation
shows that the diverse data state of the two agents results
in actuator commands that diverge sufficiently to trigger an
error detection. However, there is a nonzero chance that the
diverse agents will produce similar actuation outputs even
in the presence of an error. In our experiments, we find
the probability that a fault will result in similar actuation
outputs in both agents and also result in a safety hazard to be
small (0.001 for GPU faults; which is estimated by calculating
missed safety hazard cases/total fault injection experiments = 4/3189).

B. Comparison with Fully Duplicated ADS

Full duplication of an ADS can be achieved at different
levels of granularity, ranging from at the instruction level (tight
coupling) to the vehicle actuation level (loose coupling). By
controlling the granularity, the designer explicitly trades off
error detection coverage and system availability for design and
implementation simplicity. We implemented and evaluated a
loosely coupled duplicated system, which is hereafter referred
to as FD-ADS. We only implement and evaluate FD-ADS
and not the tightly coupled duplicated system because: (i)
synchronization at the instruction level, which is required for
tightly coupled systems, is prohibitively expensive and difficult
to achieve in practice and (ii) tightly coupled systems will
detect all faults irrespective of their plausible masking at the
actuation level by the application, which significantly decreases
the availability of the system.

In FD-ADS, the two redundant agents are executing on their
own dedicated processors receiving and processing the same
input data from the same set of sensors (i.e., sensors are not
duplicated). We do not multiplex the duplicated agents on the
same processor because (i) the resource overhead of executing
the two agents doubles at the original sensing frequency, and (ii)
multiplexing on the same hardware will not detect permanent
faults as both the duplicated agents will produce the same
output as they receive the same input and experience exactly
the same fault. We inject a fault in one of the agents while
using the other one as a reference for comparison. Because
the trace of the agents’ outputs do not match bit-for-bit (even
for the golden runs) due to the inherent non-determinism that
exists in software and hardware, we use a statistical model to
detect errors. The error detector is trained using the rolling
window-based approach discussed in §III.

Compared to DiverseAV, FD-ADS achieved a precision of
0.18 and a recall of 0.84 across 500 runs of each scenario
(1500 total runs). FD-ADS correctly identified most cases of
true positives (accidents and trajectory violations). However, it
did not result in recall of 1.0 because we use statistical error
detection as there is inherent non-determinism in software and
hardware when the agents are synchronized at the actuation
level. A tightly coupled duplicated system would have reached a

10

recall rate of 1.0; however, as discussed earlier it is prohibitively
expensive to design and implement such a system. Note that the
recall values of DiverseAV and FD-ADS are close to each other,
showcasing the efficacy of DiverseAV. Not surprisingly, FD-
ADS falsely identified significant number of fault-injected runs
which did not lead to safety hazards as errors. This is because
it is overly sensitive to mismatches between the control outputs
even when they would not lead to safety hazards, leading to
lower precision (and lower availability) compared to DiverseAV-
enabled ADS. Similar to the DiverseAV-enabled ADS, none
of the golden runs were marked in error.

C. Comparison with Single Agent ADS
We compared our model with the single-agent system, in

which the ADS is using only a single agent to control the ego
vehicle. Both in the FD-ADS and DiverseAV-enabled ADS, the
system is using two agents and hence, the agents are reference
to each other for comparing the outputs. However, in the single-
agent system, there is no reference available for comparison
except for identifying anomalies in the timeseries data.

It is difficult to identify errors using temporal outliers or
range-based detectors [48] as occasional blips (caused by mode
changes, such as from throttling to braking, that are within
the acceptable output range) frequently occur in the actuation
outputs (see Fig. 2(4)(a)). Increasing the rolling window size
to smooth the outputs in order to remove blips reduces the
overall recall of the error detector model, while decreasing
the rolling window size results in too many false positives. To
illustrate the difficulty in designing a temporal outlier-based
error detector using a single agent, we developed a rolling
window-based anomaly detection technique similar to the one
used in this paper but use the agent’s output from the previous
time step as a reference. The best performance, in terms of
detection accuracy, achieved by the single-agent system yields
in precision and recall of 0.17 and 0.52 respectively; which is
significantly lower compared to both FD-ADS and DiverseAV-
enabled ADS. We must note that it might be possible to
detect safety-critical faults in a single-agent ADS; however,
that approach will require large amount of data and complex
machine-learning models such as an LSTM/RNN [49] to train
the detector. Our future work will explore such models. In
contrast, DiverseAV is simple requiring comparison of actuation
commands with interpretable statistical model using fewer
model parameters.

VII. RELATED WORK

Safety-critical systems employ one or more of the following
techniques to protect against random hardware faults.

Hardware design modifications, which include error de-
tection and correction at the circuit, micro-architecture, and
architecture levels (e.g., instruction retry [50]–[52], ECC [53]–
[55], checkers [56], and parity codes [9]). Significant effort has
been devoted to hardware-level redundancy such as lockstep
duplication [14]–[16], thread redundancy inside a single
core [15], [17], or across cores [18]–[21], including partial
redundancy techniques [57], [58]. However, those solutions
require hardware support for thread synchronization, and incur
significant area and power overheads. Furthermore, because of
those overheads, applications of these techniques tend to be
associated with larger arrays of circuit elements for which the
overheads can be amortized. Thus, in typical chips, a significant
portion of vulnerable elements are not protected (e.g., small

SRAM arrays, flip-flops, compute units, and pipelines) leading
to silent-data corruptions [59], [60].

Software algorithms or enhancements, which include er-
ror detection and correction at the software level with negligible
dedicated hardware support. Techniques include (i) algorithm-
based error detection [61], [62], (ii) assertions [12], [13] (iii)
monitoring [63]–[66]), and (iv) software-based redundancy
(e.g., instruction retry and duplication among others [67]–
[72]). Software enhancements usually incur lower overhead
than hardware methods. However, the applicability of software
techniques tends to be dependent on the specific target software,
so significant portions of the software are often left unprotected.
Moreover, identifying algorithms and methods that provide high
coverage is challenging and requires an in-depth understanding
of the fault propagation in the application [73].

Enforcing diversity helps to tackle common cause failures
(CCF) such as design bugs and software implementation defects.
Diversity can be enforced at the instruction and program
level [23], temporal level (e.g., instruction-retry), design
level [22] and the data level [24]. The assumption is that the
diverse designs are susceptible to different faults and therefore,
the outputs of the two diverse designs will significantly
differ on encountering a systematic fault. However, designing
diversity is too costly (in terms of man-hours required to
develop N-versions [23] or data transformation techniques/input
reexpression logic [24]) and arguably challenging to enforce
in practice.

Putting DiverseAV into perspective. DiverseAV is a
lightweight, software-based redundancy technique that exploits
the temporal data diversity present in the sensor data of
dynamical autonomous systems to achieve high-coverage error
detection for transient and permanent hardware faults without
incurring significant computational overhead (in terms of
performance and hardware/software resources), thus enabling
detection of safety-critical faults in the computational hardware
elements of the entire ADS. In contrast to full hardware or
software duplication, DiverseAV ensures data and (internal)
state diversity between the two agents. Moreover, DiverseAV is
a plug and play solution, and the engineering and development
effort for enabling DiverseAV is small (unlike for the above-
mentioned diversity techniques). To the best of our knowledge,
there is no existing work on achieving ADS redundancy by
leveraging temporal data diversity in sensors.

VIII. CONCLUSION

This paper proposes and develops DiverseAV, a low-cost
redundancy technique for autonomous driving agents that
leverages temporal diversity for safety-critical error detection.
Our results show that DiverseAV trades off a marginal decrease
in error detection coverage to increase the overall system
availability significantly and to lower design complexity and
resource overheads compared to a tightly coupled fully dupli-
cated system. In the future, we plan to explore and understand
the safety vs. reliability vs. resource overhead trade-off by
letting faults propagate through the system (e.g., by disabling
ECC in memory) and detecting them at the actuation level
through DiverseAV. The goal of such research would be to
understand the engineering margin and tradeoffs to provide
the utmost safety with minimal resource overhead, resulting in
more commercially viable vehicles. We also plan to explore
the efficacy of DiverseAV in other dynamical systems such as
unmanned aerial vehicles to understand its limitations, if any.

11

REFERENCES

[1] M. Gerla, E. K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” in 2014 IEEE
World Forum on Internet of Things (WF-IoT), Mar 2014, pp. 241–246.

[2] J. Tan and X. Fu, “Chapter 23 - addressing hardware reliability
challenges in general-purpose gpus,” in Advances in GPU Research
and Practice, ser. Emerging Trends in Computer Science and Applied
Computing, H. Sarbazi-Azad, Ed. Boston: Morgan Kaufmann, 2017,
pp. 649–705. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/B9780128037386000239

[3] “Road vehicles — Functional safety,” International Organization for
Standardization, Geneva, CH, Standard, Dec. 2018.

[4] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer,
and S. W. Keckler, “Understanding Error Propagation in Deep Learning
Neural Network (DNN) Accelerators and Applications,” in Proc. Inter-
national Conf. for High Performance Computing, Networking, Storage
and Analysis, 2017, pp. 8:1–8:12.

[5] ——, “Understanding error propagation in deep learning neural network
(dnn) accelerators and applications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2017, pp. 1–12.

[6] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Hands off the wheel in autonomous vehicles?: A systems perspective on
over a million miles of field data,” in Proc. 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2018.

[7] S. Jha, S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based fault injection for
autonomous vehicles: A case for bayesian fault injection,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2019, pp. 112–124.

[8] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,”
Proceedings of the IRE, vol. 49, no. 1, pp. 228–235, 1961.

[9] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
information theory, vol. 8, no. 1, pp. 21–28, 1962.

[10] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error
detection,” IEEE Transactions on Parallel and Distributed Systems,
vol. 10, no. 6, pp. 627–641, 1999.

[11] A. Mahmood and E. J. McCluskey, “Concurrent error detection using
watchdog processors-a survey,” IEEE Transactions on Computers, vol. 37,
no. 2, pp. 160–174, 1988.

[12] L. A. Clarke and D. S. Rosenblum, “A historical perspective on runtime
assertion checking in software development,” ACM SIGSOFT Software
Engineering Notes, vol. 31, no. 3, pp. 25–37, 2006.

[13] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” IEEE Transactions on software
Engineering, vol. 30, no. 12, pp. 859–872, 2004.

[14] X. Iturbe, B. Venu, E. ?zer, J.-L. Poupat, G. Gimenez, and H.-U. Zurek,
“The Arm Triple Core Lock-Step (TCLS) Processor,” ACM Transactions
on Computer Systems, vol. 36, pp. 1–30, 06 2019.

[15] E. Rotenberg, “AR-SMT: a microarchitectural approach to fault tolerance
in microprocessors,” in Digest of Papers. Twenty-Ninth Annual Interna-
tional Symposium on Fault-Tolerant Computing (Cat. No.99CB36352),
1999, pp. 84–91.

[16] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee,
B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev,
“Compute Solution for Tesla’s Full Self-Driving Computer,” IEEE Micro,
vol. 40, no. 2, pp. 25–35, 2020.

[17] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in Proceedings of 27th International
Symposium on Computer Architecture (IEEE Cat. No.RS00201), 2000,
pp. 25–36.

[18] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multi-threading alternatives,” in Proceedings
29th Annual International Symposium on Computer Architecture, 2002,
pp. 99–110.

[19] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz, “Transient-
fault recovery for chip multiprocessors,” in 30th Annual International
Symposium on Computer Architecture, 2003. Proceedings., 2003, pp.
98–109.

[20] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar, “Utilizing
Dynamically Coupled Cores to Form a Resilient Chip Multiprocessor,” in
37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07), 2007, pp. 317–326.

[21] H. Jeon and M. Annavaram, “Warped-DMR: Light-weight Error Detection
for GPGPU,” in 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, 2012, pp. 37–47.

[22] J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing design
diversity to achieve fault tolerance,” IEEE Software, vol. 8, no. 4, pp.
61–71, 1991.

[23] A. Avizienis, “The N-version approach to fault-tolerant software,” IEEE
Transactions on software engineering, no. 12, pp. 1491–1501, 1985.

[24] P. E. Ammann and J. C. Knight, “Data diversity: An approach to software
fault tolerance,” IEEE Transactions on Computers, vol. 37, no. 4, pp.
418–425, 1988.

[25] H. Zhao, S. K. S. Hari, T. Tsai, M. B. Sullivan, S. W. Keckler, and J. Zhao,
“Suraksha: A framework to analyze the safety implications of perception
design choices in avs,” in 2021 IEEE 32nd International Symposium
on Software Reliability Engineering (ISSRE). IEEE Computer Society,
2021.

[26] NVIDIA, “NVIDIA DRIVE | NVIDIA Developer,” https://developer.
nvidia.com/driveworks.

[27] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by Cheating,”
in Conference on Robot Learning (CoRL), 2019.

[28] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An Open Urban Driving Simulator,” in Proceedings of the 1st Annual
Conference on Robot Learning, 2017, pp. 1–16.

[29] T. Tsai, S. K. S. Hari, M. B. Sullivan, O. Villa, and S. W. Keckler,
“NVBitFI: Dynamic Fault Injection for GPUs,” in Proceedings of
the IEEE/IFIP International Conference on Dependable Systems and
Networks, 2021.

[30] “PinFI,” https://github.com/DependableSystemsLab/pinfi.
[31] F. F. d. Santos, S. K. S. Hari, P. M. Basso, L. Carro, and P. Rech, “De-

mystifying gpu reliability: Comparing and combining beam experiments,
fault simulation, and profiling,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2021, pp. 289–298.

[32] P. Koopman, B. Osyk, and J. Weast, “Autonomous vehicles meet the
physical world: Rss, variability, uncertainty, and proving safety,” in Com-
puter Safety, Reliability, and Security, A. Romanovsky, E. Troubitsyna,
and F. Bitsch, Eds. Cham: Springer International Publishing, 2019, pp.
245–253.

[33] “Carla autonomous driving challenge.” [Online]. Available: https:
//leaderboard.carla.org/challenge/

[34] National Highway Traffic Safety Administration (NHTSA), “Pre-Crash
Scenario Typology for Crash Avoidance Research DOT HS 810 767,”
2007.

[35] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba, “End to End Learning for Self-Driving Cars,” CoRR, vol.
abs/1604.07316, 2016.

[36] Baidu, “Apollo 5.0,” https://github.com/ApolloAuto/apollo.
[37] R. Moore-Colyer, “Nvidia Xavier Supercomputer Aims To Turn Cars

Into AIs On Wheels.”
[38] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,

“SASSIFI: An architecture-level fault injection tool for gpu application
resilience evaluation,” in Performance Analysis of Systems and Software
(ISPASS), 2017 IEEE International Symposium on. IEEE, 2017, pp.
249–258.

[39] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A methodology for evaluating the error resilience of gpgpu applications,”
in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 221–230.

[40] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability
and Security, 2015, pp. 11–16.

[41] “NVBitFI,” https://github.com/NVlabs/nvbitfi.
[42] S. Mitra, N. Saxena, and E. McCluskey, “A design diversity metric

and reliability analysis for redundant systems,” in International Test
Conference 1999. Proceedings (IEEE Cat. No.99CH37034), 1999, pp.
662–671.

[43] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets Robotics:
The KITTI Dataset,” International Journal of Robotics Research (IJRR),
2013.

[44] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The Kitti Vision Benchmark Suite,” in , 2012 IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361.

[45] J. Wei, A. Thomas, G. Li, and K. Pattabiraman, “Quantifying the
Accuracy of High-Level Fault Injection Techniques for Hardware Faults,”
in 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2014, pp. 375–382.

[46] Jessie White Secretary of State, “Illinois rules of the road,” https://www.
ilsos.gov/publications/pdf_publications/dsd_a112.pdf, 2021.

[47] D. B. Fambro, Determination of stopping sight distances (Report /
National Cooperative Highway Research Program). National Academy
Press, 1997.

[48] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” 2021.

12

https://www.sciencedirect.com/science/article/pii/B9780128037386000239
https://www.sciencedirect.com/science/article/pii/B9780128037386000239
https://developer.nvidia.com/driveworks
https://developer.nvidia.com/driveworks
https://github.com/DependableSystemsLab/pinfi
https://leaderboard.carla.org/challenge/
https://leaderboard.carla.org/challenge/
https://github.com/ApolloAuto/apollo
https://github.com/NVlabs/nvbitfi
https://www.ilsos.gov/publications/pdf_publications/dsd_a112.pdf
https://www.ilsos.gov/publications/pdf_publications/dsd_a112.pdf

[49] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust
anomaly detection for multivariate time series through stochastic
recurrent neural network,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, ser. KDD ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 2828–2837. [Online]. Available:
https://doi.org/10.1145/3292500.3330672

[50] G. L. Hicks, L. D. Howe Jr, and F. A. Zurla Jr, “Instruction retry
mechanism for a data processing system,” Aug. 23 1977, uS Patent
4,044,337.

[51] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing software-directed instruction replication for GPU error
detection,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018, pp. 842–853.

[52] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for gpgpu,” in 2011
IEEE International Parallel & Distributed Processing Symposium. IEEE,
2011, pp. 287–300.

[53] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory,” IBM Microelectronics division, vol. 11, pp.
1–23, 1997.

[54] J. E. Barth Jr, C. E. Drake, J. A. Fifield, W. P. Hovis, H. L. Kalter, S. C.
Lewis, D. J. Nickel, C. H. Stapper, and J. A. Yankosky, “Dynamic ram
with on-chip ecc and optimized bit and word redundancy,” Jul. 28 1992,
uS Patent 5,134,616.

[55] M. B. Sullivan, S. K. S. Hari, B. Zimmer, T. Tsai, and S. W. Keckler,
“SwapCodes: Error Codes for Hardware-Software Cooperative GPU
Pipeline Error Detection,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018, pp. 762–774.

[56] R. Nathan and D. J. Sorin, “Argus-G: Comprehensive, Low-Cost Error
Detection for GPGPU Cores,” IEEE Computer Architecture Letters,
vol. 14, no. 1, pp. 13–16, 2015.

[57] B. H. Meyer, B. H. Calhoun, J. Lach, and K. Skadron, “Cost-effective
safety and fault localization using distributed temporal redundancy,” in
2011 Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), 2011, pp.
125–134.

[58] J. Fu, Q. Yang, R. Poss, C. R. Jesshope, and C. Zhang, “On-demand
thread-level fault detection in a concurrent programming environment,”
in 2013 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2013, pp. 255–262.

[59] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Understanding
GPU errors on large-scale HPC systems and the implications for system
design and operation,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2015, pp.
331–342.

[60] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of Blue Waters,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 610–621.

[61] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518–528, 1984.

[62] S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler, “Making
Convolutions Resilient via Algorithm-Based Error Detection Techniques,”
arXiv preprint arXiv:2006.04984, 2020.

[63] D. Gizopoulos, M. Psarakis, S. V. Adve, P. Ramachandran, S. K. S. Hari,
D. Sorin, A. Meixner, A. Biswas, and X. Vera, “Architectures for online
error detection and recovery in multicore processors,” in 2011 Design,
Automation & Test in Europe. IEEE, 2011, pp. 1–6.

[64] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“Anomaly detection using autoencoders in high performance computing
systems,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 9428–9433.

[65] F. Haas, S. Weis, T. Ungerer, G. Pokam, and Y. Wu, “Fault-Tolerant
Execution on COTS Multi-core Processors with Hardware Transactional
Memory Support,” in ARCS, 03 2017, pp. 16–30.

[66] M. S. Alhakeem, P. Munk, R. Lisicki, H. Parzyjegla, H. Parzyjegla, and
G. Muehl, “A Framework for Adaptive Software-Based Reliability in
COTS Many-Core Processors,” in ARCS 2015 - The 28th International
Conference on Architecture of Computing Systems. Proceedings, 2015,
pp. 1–4.

[67] D. J. Scales, M. Nelson, and G. Venkitachalam, “The Design of a
Practical System for Fault-Tolerant Virtual Machines,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 4, p. 30?39, Dec. 2010. [Online]. Available:
https://doi.org/10.1145/1899928.1899932

[68] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: software implemented fault tolerance,” in International Symposium
on Code Generation and Optimization, 2005, pp. 243–254.

[69] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based
metrics for strategic placement of detectors,” in 11th Pacific Rim
International Symposium on Dependable Computing (PRDC’05). IEEE,
2005, pp. 8–pp.

[70] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “SymPLFIED:
Symbolic program-level fault injection and error detection framework,”
in 2008 IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN). IEEE, 2008, pp. 472–481.

[71] S. Alcaide, L. Kosmidis, C. Hernandez, and J. Abella, “Software-only
based Diverse Redundancy for ASIL-D Automotive Applications on
Embedded HPC Platforms,” in 2020 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2020, pp. 1–4.

[72] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors,
“PLR: A Software Approach to Transient Fault Tolerance for Multicore
Architectures,” IEEE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 135–148, 2009.

[73] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding error
propagation in GPGPU applications,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 240–251.

13

https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1145/1899928.1899932

