
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

Data-Driven Application-Oriented Reliability Model
of a High-Performance Computing System

Bentolhoda Jafary, Saurabh Jha , Lance Fiondella , Member, IEEE, and Ravishankar K. Iyer , Fellow, IEEE

Abstract—Reliability analysis and performance evaluation are
complementary methods to quantify nonfunctional aspects of a
system. However, a range of factors such as concurrency and
heterogeneity quickly exacerbate the state-space explosion problem
when attempting detailed system-level modeling and simulation of
high-performance computing (HPC) systems. To overcome these
impediments to modeling and analysis, this article develops a hi-
erarchical model of an application that implements checkpointing
running in an HPC environment subject to application, network,
and system-wide outages. The modeling approach ensures that
the number of states is linear in the number of checkpoints and
possesses a low constant factor for the number of recovery states
most relevant to the external influences contributing to degraded
application performance. We illustrate the types of analysis enabled
by the model through a series of examples with parameters deter-
mined empirically from data logs of the Blue Waters supercom-
puter located at the University of Illinois at Urbana–Champaign.
A comprehensive comparative analysis of the model parameters
indicates that lowering the failure rate of network nodes would most
significantly reduce application downtime. We also discuss how the
modeling approach can be used to objectively assess both current
and hypothetical future systems to identify competitive designs and
enhancements.

Index Terms—Application performance, application reliability,
high-performance computing (HPC), network outage, utilization.

NOMENCLATURE

� Number of intermediate checkpoints.
τ Compute time between successive checkpoints.
tn Computing time required of application.
nd Number of compute nodes assigned to

application.
nn Number of network nodes assigned to

application.

Manuscript received May 31, 2020; revised November 1, 2020; accepted May
4, 2021. Associate Editor: H. Jiang. (Corresponding author: Lance Fiondella.)

Bentolhoda Jafary is with the Department of Electrical and Computer Engi-
neering, University of Massachusetts Dartmouth, Dartmouth, MA 02747 USA
and also with AeroVironment, Inc., Simi Valley, CA 93065 USA (e-mail:
bjafary@umassd.edu).

Saurabh Jha is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
sjha8@illinois.edu).

Lance Fiondella is with the Department of Electrical and Computer Engi-
neering, University of Massachusetts Dartmouth, Dartmouth, MA 02747 USA
(e-mail: lfiondella@umassd.edu).

Ravishankar K. Iyer is with the Coordinated Science Laboratory, Uni-
versity of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
rkiyer@illinois.edu).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TR.2021.3085582.

Digital Object Identifier 10.1109/TR.2021.3085582

nb Number of blades assigned to application.
nc Number of cabinets assigned to application.
Rd(t) Reliability of compute node.
Rn(t) Reliability of network node.
Rl(t) Reliability of link.
Rb(t) Reliability of blade.
Rc(t) Reliability of cabinet.
m Number of the application running in a time

interval.
Ttotal Total time to run m applications.
NA Network and application working.
NA Network working and application recovery.
NA Network recovery and application working.
NA Network and application recovery.
λi Failure rate.
k Number of retries.
piNA,(i+1)NA

Probability of reaching the next checkpoint in
system working state.

piNA,i
NA

System working to application recovery.
piNA,i

NA
System working to network recovery.

piNA,i
NA

System working to network and application
recovery.

pk−j,iNA
Probability of retry to system recovery.

pk−j,k−(j+1) Probability of retry to the next retry.
pk−j,k Probability of restart the retry attempts.
pk−j,i

NA
Probability of retry to network and application
recovery.

pnbc(τ) Network nodes, blades, and cabinets allocated
to the application work.

pRdRN/∈Ai
Probability of compute node, network nodes,
blades, links, and cabinets
not allocated to the application network nodes,
blades, and cabinets work.

pFdRN/∈Ai
Probability of compute node fails but network
nodes, blades, links, and cabinets not allocated
to the application network nodes, blades, and
cabinets work.

ρiNA
Total time spent in a working state.

E[H(τ)] Mean holding time.
ρc Time to perform the checkpoint.
ρi

NA
Total time spent in an application recovery state.

ρi
NA

Total time spent in a network recovery state.
ρi

NA
Total time spent in a network and application
recovery state.

ρ Total time.

0018-9529 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0926-0776
https://orcid.org/0000-0002-4572-6599
https://orcid.org/0000-0003-2245-3038
mailto:bjafary@umassd.edu
mailto:sjha8@illinois.edu
mailto:lfiondella@umassd.edu
mailto:rkiyer@illinois.edu
https://doi.org/10.1109/TR.2021.3085582

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

I. INTRODUCTION

THIS article models failures and recoveries observed on
the Blue Waters,1 a 13.3-petaflops/s supercomputer at the

University of Illinois at Urbana–Champaign, to assess system
utility, i.e., the fraction of time spent in performing computa-
tions. System component failures (such as processor failures
and network router failures) and their associated recoveries
significantly impact the running applications in the system, thus
decreasing the overall utility. A data-driven failure model is
built using data obtained in collaboration with Blue Waters staff.
Such a model can help both system designers and application
developers and users of the system. System designers can use
this model for sensitivity analysis to identify the bottlenecks
impeding higher system utility. In practice, users are primarily
concerned with their application and, thus, can use this model
to improve the overall application performance in the presence
of inherent system failure and recovery characteristics. The
characteristics of the proposed model are as follows.

1) The proposed model is application oriented, meaning that
it takes a bottom-up approach to consider the effects
of failures and recoveries of system components on the
running application.

2) The application-oriented model is hierarchical. At the
lowest level, failure and recovery of system components
are modeled using arbitrary life distributions, such that no
assumption is made about the specific form of the distribu-
tion. This lower level model is solved algebraically, and the
outcomes of the lower level model, including successful
recovery, further degradation, and failure, are incorporated
into the upper-level Markovian model representing the
application view of the system as transition probabilities.
This general modeling approach enables the mapping of
arbitrary continuous distributions characterizing failures
and recoveries of the system components to discrete dis-
tributions at the top level.

3) Based on the characterization of the data, the proposed
model assumes that the system component failures are
statistically independent, but that the impact of all failures
is not equal. For example, a failure of the compute node
running the application would require that application to
restart from the last checkpoint, whereas failure of the
network node (i.e., network routers) impacts any running
application irrespective of its location in the network
topology.

4) The solution of the proposed reliability model informs
performance analysis through a utility function, which is
system independent. This utility function quantifies the
fraction of time spent performing computations.

The model is used to calculate a closed-form analytical solu-
tion characterizing the utility of the system. Such an analytical
solution is preferred because it enables efficient sensitivity anal-
ysis on the model parameters to determine the increase in utility
attainable by: 1) reducing the failure rate of a hardware element;
2) increasing the probability of application or network recovery;

1The Blue Waters supercomputer is one of the largest supercomputers in the
world in terms of the number of compute nodes and storage servers.

and 3) decreasing the time to recover from an application, net-
work, or system-wide outage. The sensitivity analysis of model
parameters enables an objective ranking of alternative possible
improvements. Neither the analytical nor the numerical methods
widely used in current tools such as Mobius [1] or Figaro [2]
can be used to directly obtain the utility of highly complex
high-performance computing (HPC) systems. The automated
methods provided in these tools fail to obtain solutions due to
state-space explosion. While identical solutions of the simplified
model presented in this article are possible using numerical
methods, analytical methods are desirable for the reasons stated
above. The value of the proposed model is as follows.

1) The proposed modeling approach is repeatable for other
large-scale systems, thereby providing an approach to ob-
jectively compare existing HPC systems and rank the po-
tential effectiveness of alternative design improvements.

2) Unlike alternative approaches [3], [4], our proposed model
considers the application view. We perform a bottom-
up modeling approach to consider reliability and per-
formance from the perspective of the application. This
enables us to avoid the complexity inherent in a top-down
model of an HPC system that must consider multiple
applications. In doing so, we reduce complexity from
millions of states to simulate a system executing multiple
applications, to a state space, which is linear in the number
of checkpoints times a constant to consider outages that
impact the application.

3) Such a modeling approach can help both system designers
and application developers and users of the system. More-
over, the proposed model can serve as a guide for future
research and development efforts of the HPC community
such as novel network architectures, algorithms and hard-
ware for faster recovery times, and scientific advances
that lower failure rates to collectively support systematic
efforts to scale HPC environments.

We illustrate the value of the model through examples, which
employ parameters distilled from measurements collected from
the Blue Waters supercomputer. Our results indicate that reduc-
ing the time to recover from network outages would improve
utility most significantly (10.49%). This observation agrees
with intuition because network outages impact all applications
regardless of the number of compute nodes to which they are
assigned. Moreover, network nodes are the most plentiful system
component contributing to network outages and also possess
the lowest mean time to failure among these network elements.
Our analysis suggests that increasing job size from 100 compute
nodes to all nodes (>28 000) without decreasing the checkpoint-
ing interval would lower the utility from 57.23% to 29.13%, and
that a machine with just 12 cabinets (1152 nodes) to four times
the size of Blue Waters (1136 cabinets) would degrade the utility
of a job running on 1000 nodes from 82.95% to 33.78%.

II. FAILURES AND RECOVERIES IN BLUE WATERS

Modern HPC systems are composed of three primary compo-
nents: compute, network, and storage. In such a design, compute
servers (nodes) are interconnected with one another to form

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAFARY et al.: DATA-DRIVEN APPLICATION-ORIENTED RELIABILITY MODEL OF A HIGH-PERFORMANCE COMPUTING SYSTEM 3

Fig. 1. Data flow of analysis and modeling framework.

compute clusters, storage servers are interconnected with one
another to form storage clusters, and network components not
only connect servers in storage and compute, respectively, but
also connect compute to storage and vice versa. Such a design
enables fault tolerance and scalability. Moreover, this idea is
extended to each of the individual clusters, where compute
nodes are further arranged in blades and cabinets, allowing the
system to tolerate failures of individual blades and cabinets,
while providing horizontal scaling capabilities.

As an example of a modern HPC system, this section provides
a brief description of the design and architecture of the Blue
Waters supercomputer as well as examples and illustrations of
observed failures and their impact on applications. Blue Waters
is a large-scale Cray XE system hosted at the University of
Illinois at Urbana–Champaign.

A. Blue Waters System Design

Blue Waters is composed of 288 Cray liquid-cooled cabinets
hosting 22 640 XE (CPU only nodes) nodes and 4228 XK (CPU
+ graphical processing unit) nodes. Each cabinet consists of
an L1 cabinet controller, several fan trays, power conversion
electronics, breakers, a blower and chiller, and related piping.
Each cabinet is further composed of three chassis, and each
chassis contains eight blades. Each blade is composed of four
compute nodes (XE or XK) and two network nodes (Gemini
ASICs).

A Cray Gemini [5] is a 3-D torus-based high-speed inter-
connection network that connects network nodes within Blue
Waters. The “X” direction in a 3-D torus provides connectivity
between cabinets in a row, while the “Y ” direction connectivity
between rows and the “Z” direction provides connectivity within
the cabinet. The 3-D torus network and the Gemini ASIC are
shown in the uppermost system layer of Fig. 1, where each cube
corresponds to one Gemini ASIC (henceforth called network
nodes). A network node in the torus network is connected to

other network nodes by ten connections, two each in X+, X−,
Z+, and Z− directions and one each in Y + and Y−.

B. Running Applications on Blue Waters

The application on an HPC system is a parallel scientific
computing workload composed of multiple computation tasks.
On Blue Waters, multiple applications can be run concurrently
with one another. However, a compute node is entirely dedicated
to the application as opposed to sharing the compute nodes
among multiple applications such as the Cori HPC system at
the National Energy Research Scientific Computing Center [6].

At any time, application tasks may be performing compu-
tation, communication, or I/O. Since most parallel scientific
applications are written using the MPI [7], Charm++ [8], or
PGAS [9] frameworks, the multiple tasks more or less coordinate
their actions, behaving as one cohesive unit.

Steps A1–A4 in Fig. 1 show the steps taken by the user and
system to launch and execute jobs on Blue Waters. A job consists
of one or more application that users want to run in parallel. A
user can submit either interactive jobs or batch jobs through
the “qsub” command, a front-end interface to the Torque [10]
resource manager. Jobs are immediately queued by the system.
Once the requested resources are reserved, applications in the
job scripts are executed with the assistance of Application-Level
Placement Scheduler [11], which sets application environment
variables such as libraries and system paths, executes, and moni-
tors application progress. As the job transitions from submission
to the finish state, an event message is written to its logs, which
can then be monitored to track the status of the job in the system.

C. Examples and Illustration From Blue Waters

This section describes failure scenarios observed in Blue Wa-
ters, explaining how they inform our system modeling priorities.
The case studies discussed here include the following.

1) Section II-C1 provides an example of occurrence of fail-
ures because of propagation.

2) Section II-C2 discusses the cost of checkpointing and
recovery on large-scale applications.

1) Cascaded Failures Due to Fault Propagation: The pump
gasket problem is an example of cascading failures in the system,
which can occur when the temperature in a cabinet rises. Over-
heating can trigger emergency power-OFF of the blade, which is
a mechanism to protect the blades from permanent damage. This
action results in network link failure, triggering network-wide
recovery. As this network-wide recovery progresses, additional
network links fail in the same cabinet but on a different blade.
These failures cascade into further failures in the route computa-
tions phase of network recovery since the topology experiences
changes between the time the routes were calculated and the
time the routes were asserted, producing an inconsistent system
state. The failure of the route computation and subsequent retries
to establish an alternative path for nodes to communicate with
other nodes in the system leads to the failure of the network-wide
recovery. The thermal effects propagated to nearby compute cab-
inets cause failures of routers and other components. To repair
the system, a system-wide outage is declared, lasting for several

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

hours until the problem with the pump gasket can be detected
and fixed. The failure of recovery operations can be attributed to
the inability to recover from multiple failures occurring in close
proximity in time because the time between failures was less than
the time required to orchestrate a successful recovery operation.
The failure of the recovery procedure was due to the inability
of the procedures to recover from multiple failures occurring in
close proximity in time, i.e., the time between the failures was
less than the time required to orchestrate a successful recovery
operation.

2) Checkpointing and Recovery of Large-Scale HPC Ap-
plication: There are two checkpointing approaches employed
in HPC systems: one is system-supported checkpointing such
as the algorithm used is LAM/MPI checkpoint/restart frame-
work [12]; the other approach is application based, where a
global barrier is explicitly used in the application to save a global
consistent state, which places the burden of checkpointing on the
application. Checkpointing in Blue Waters is application based.
The application is instrumented with a number of checkpoint
primitives at its safe points (e.g., a global barrier), where it can
safely quiesce, such as the end of a loop where it performs a
checkpoint. This section discusses the checkpoint and recovery
characteristics of MP-Gadget (Massively Parallel Cosmological
SPH Simulation Software) application [13],2 which is used to
model galaxies and their evolution over time.

MP-Gadget is one of the largest applications executing on
Blue Waters using as much as 20 000 nodes. Each checkpoint in
MP-Gadget is about 50 TB, and writing the checkpoint takes
10–15 min. A failure of the application or running it from
last checkpoint requires restoration of the checkpoint data and
initialization of the application. This loading and initialization of
the application can take 20–40 min. For MP-Gadget application
run executing on 20 000 nodes, the checkpointing cost is 20k
nodes × 10 min = 3333.3 node hours and the restart cost is
20k nodes × 30 min = 10 000 node hours. In general, the
following observations can be made from the data available to
use on checkpointing.

1) Users on a large-scale system tend to decrease checkpoint
intervals if their jobs fail repeatedly. Users of MP-Gadget
decreased checkpointing intervals by an hour to ensure that
their application progresses forward in reasonable time.

2) Not all applications require equal amounts of time to
checkpoint/restart. On Blue Waters, application develop-
ers take application-specific checkpoints, which can vary
from dumping the memory to dumping only the parame-
ters of the simulation models. For example, Parallel Spatial
Direct Numerical Simulation [14] checkpoints about 8 TB
of data, which require about 1 min, and restoration of
checkpoint takes 2–5 min.

These and other complex sequences of events are difficult
to exhaustively characterize. Therefore, we quantify the failure
rates of elements within the hardware hierarchy within Blue
Waters that contribute to application and network outage in order
to construct a model of reliability and performance.

2https://github.com/bluetides-project/MP-Gadget

TABLE I
EMPIRICAL PARAMETER ESTIMATES

TABLE II
ASSUMED PARAMETER

D. Blue Waters Field Failure Data Characterization

The dataset was generated by the production system during
the March 2013–January 2015 time frame. All the datasets and
their usages in our analysis pipeline are shown in Fig. 1, along
with the number of entries such as the number of the line and
size on the disk. The datasets acquired directly from the system
are shown in cylinders. We consider three different kinds of
failures, namely, application, system, and component failures.
An application failure occurs when the running application fails,
whereas a system failure occurs when the system is shut down,
while component failures include hardware and software failure.
Component failures occur when the management software or the
hardware fails.

Maintenance logs are generated by Blue Waters maintenance
specialists and consolidated by Cray. Events are added to the
failure report upon: 1) any failure that requires special corrective
actions such as a manual reboot or repair of faulty hardware and
2) events that cause system downtime in the form of system-wide
outages. Over 4000 incidents were reported during this study,
including 101 system-wide outages.

System logs contain system events logged by the OS and by
the Cray Hardware Supervisor System.

Table I provides the failure rates, probabilities, and time
parameters of the model determined from empirical analysis
of Blue Waters maintenance and system log data.

However, some application and system parameters of the
model could not be estimated, due to inadequate field-
measurements. Therefore, Table II provides numerical values
assumed to illustrate how the model can be used to conduct
sensitivity analysis.

In Table II, PrA and PrN are the probability of successful
recovery from application and network failure, respectively,
trA and trF are the times to recover from application and
system failure, respectively, and tc is the time to perform a
checkpointing operation. It should be noted that the model can
accommodate other values and is, therefore, not dependent on
these assumptions.

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

https://github.com/bluetides-project/MP-Gadget

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAFARY et al.: DATA-DRIVEN APPLICATION-ORIENTED RELIABILITY MODEL OF A HIGH-PERFORMANCE COMPUTING SYSTEM 5

Fig. 2. System state representation. SF denotes system failure.

III. MODELING

This section develops a hierarchical model to quantify the
impact of application, network, and system outages on an appli-
cation implementing checkpointing. The top-level model (see
Section III-A) is characterized by a discrete-time Markov chain
(DTMC) possessing states to represent computation as well as
application, network, network and application, and system-wide
outages. Recovery from the application, network, and network
and application failure states is also characterized by a set of
lower level DTMC models (see Sections III-A2–III-A4), each
with a finite number of retries.

Expressions for the transition to recovery and nonrecovery
states are modeled by a combination of success in the underlying
logic of the recovery attempt as well as life distributions for the
hardware elements. These life distributions are general and can
take any form determined from empirical data collected in sys-
tem logs. The duration of retry attempts maps these continuous
distributions to discrete transition probabilities, and the DTMC
is solved to obtain the probability of recovering, experiencing a
more serious failure, or suffering a system-wide outage. These
probabilities are substituted into the top-level model, which also
maps continuous distributions to discrete transition probabilities
based on the time between checkpoints. The solution of this
top-level model produces the average number of visits to each
working and failure state. Combining this information with the
time between application and network recovery retry attempts
and holding times in states prior to failures enables performance
analysis, decomposition of downtime to the various failure
states, and quantifies the fraction of the time spent performing
useful calculation.

The lower level model is solved algebraically, and the results
are substituted into the top-level model, which is also solved
algebraically. This approach enables efficient point calculations
with system-specific numbers as well as sensitivity analysis to
assess the relative benefit of increasing the failure time of the
different hardware elements comprising the system, increasing
the probability of successful recovery, and decreasing the time
spent recovering from various failure states or performing check-
pointing operations.

A. Markov Model

Fig. 2 shows possible states of the network, namely, working,
recovering, and failed. If the network experiences a disruption, it
enters the recovery state. This disruption impacts all applications
in progress and prevents communication within the network.

Fig. 3. State representation of application subject to network outages and
failure.

If network recovery is successful, the network returns to the
working state; otherwise, it enters the failure state and must
undergo a restart. All applications that were executing at the
time must restart from the previous checkpoint.

For the sake of exposition, Fig. 3 shows a more detailed state
representation of an application implementing two intermediate
checkpoints, which is subject to hardware failures as well as
network outages that prevent communication and may induce
failure because of timeouts. The upper two sets of states enclosed
in rectangles in Fig. 3 correspond to the network state shown in
Fig. 2. For example, the network is working properly (N) in
the states in the uppermost rectangle, while the rectangle below
refers to the states where the network is undergoing recovery
(N).

Without loss of generality, the system begins in state 1NA,
where both the network and the application are working, and
transitions to state 1NA, when hardware resources allocated
to the application such as compute nodes fail, or 1NA, when
hardware resources allocated to the application such as network
nodes induce both application and network recovery. The other
possible failure transition from 1NA is to the network recovery
state (1NA) when hardware resources not allocated to the appli-
cation induce network recovery. If no failure occurs, the system
transitions to state 2NA, which represents the first checkpoint
where the application has successfully performed one-third of
the required computation.

States 2NA and 3NA represent the first and second interme-
diate checkpoints, respectively, and possess similar transitions
with interpretations identical to those described for state 1NA.
In the ideal case, computation proceeds through � intermediate
checkpoints represented by the states iNA (2 ≤ i ≤ (�+ 1))
until it reaches the final state (4NA in this example), which is
surrounded by two concentric circles and represents successful
completion of the application.

State 1NA, where the network is working but the application
is recovering, possesses three possible transitions. The first is
a successful recovery attempt, transition to 1NA. The second
transition is to state1NA, where both the network and application
attempt recovery. Later application recovery states such as 2NA

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

and 3NA transition to 2NA and 3NA, respectively, upon success-
ful recovery or their corresponding network recovery state 2NA

and 3NA if a network outage occurs before application recovery.
However, both go to the Failure state if application recovery
fails.

Ideally, states such as 1NA, where the network is recovering
but the application is working, will experience network recovery
and return to 1NA. However, application failure may occur,
in which case both the network and application must attempt
recovery from 1NA. When the network fails to recover, the
system enters the Failure state from which all applications that
were running must be restarted from 1NA. From 1NA, only two
transitions are possible, namely, application recovery (1NA) or
Failure because the network must recover before an application
can recover.

To enable efficient quantitative analysis, this section con-
structs an algebraic Markov model corresponding to the appli-
cation subject to network outages and failure described in Fig. 3.
Toward this end, we develop expressions for the transitions of
the state model.

1) System Working: Checkpoint (piNA,(i+1)NA
): We begin

by formulating an expression for transition between two check-
point states iNA and (i+ 1)NA, i ∈ {1, . . . (�+ 1)}, where both
the network and the application are working. For this to occur,
the network must remain in the working state for duration

τ =
tn

�+ 1
(1)

where tn is the computing time required of the application after
distributing the application over nd nodes. In the worse case,
when computations require all compute nodes to be reliable, all
elements involved in the computation must be reliable for time
τ between subsequent checkpoints, including compute nodes,
network nodes, and links as well as blades and cabinets.

The system under consideration consists of 284 cabinets, and
each cabinet consists of 24 blades. Two network nodes reside
in each blade, and these network nodes connect two compute
nodes. Thus, each blade contains four compute nodes, while each
cabinet contains 96 compute nodes. If a cabinet fails, the blades
in that cabinet become inaccessible. Similarly, if a blade fails,
the corresponding network and compute nodes of that blade will
not be available. However, if a node fails, the network continues
to work. To reach a checkpoint, it is necessary that resources
allocated to the application do not fail as well as resources not
allocated to the application that would induce network failure.
Therefore, we construct the overall expression for the transition
between iNA and (i+ 1)NA (see Fig. 3) in two steps to distin-
guish between failures that induce both network and application
recovery and those that trigger network or application recovery
but not both.

Only failures of network nodes, blades, and cabinets allocated
to the application result in application and network recovery.
This is expressed as

pnbc(τ) = Rn(τ)
nn ×Rb(τ)

nb ×Rc(τ)
nc (2)

where Rn(τ) is the probability that a network node remains
in the working state for duration τ , while Rb(τ) and Rc(τ)

are the corresponding reliability expressions for a blade and
cabinet, respectively, whilenn,nb, andnc are the corresponding
number of network nodes, blades, and cabinets, respectively.
The common reliability expression for each element implicitly
assumes that failures of elements such as compute nodes are
independent and identically distributed. However, the failures
of compute nodes, network nodes, blades, and cabinets are not
assumed to be identical as indicated by the numerical parameters
reported in Table I. The assumption of independence is common
in hardware. In cases where a system is composed of heteroge-
neous hardware, more general expressions may be required.

Applications commonly utilize collocated resources. Due to
this utilization of collocated resources, (2) can be further simpli-
fied by recalling that each network node contains two compute
nodes, while each blade and cabinet contain 4 and 96 compute
nodes respectively. Thus, the reliability or probability that the
application executes for duration τ without experiencing a fail-
ure that would initiate both network and application recovery
can be expressed in terms of nd as

pnbc(τ) = Rn(τ)
�nd

2 � ×Rb(τ)
�nd

4 � ×Rc(τ)
�nd

96 �. (3)

Similarly, failure of compute nodes only leads to application
recovery, whereas any link failure or failure of network nodes,
blades, or cabinets not belonging to the application’s resources
results in network recovery. Thus, the probability of not entering
the NA or NA states may be expressed as

pRdR(N−n)
(τ) = Rd(τ)

nd ×Rn(τ)
Nn−�nd

2 � ×Rl(τ)
�Nd

12 �

×Rb(τ)
Nb−�nd

4 � ×Rc(τ)
Nc−�nd

96 �
(4)

whereRd(τ) andRl(τ) are the probabilities that a compute node
and a network link remain in the working state for duration
τ , while nd is the number of compute nodes allocated to the
application, andNn,Nb, andNc are the total number of network
nodes, blades, and cabinets in the system.

Combining (3) and (4), the probability of successfully reach-
ing a checkpoint is

piNA,(i+1)NA
(τ) = pnbc(τ)× pRdR(N−n)

(τ). (5)

a) System working to application recovery (piNA,i
NA

):
Transitions from states where both the network and the ap-
plication are working (iNA) to the state where the application
undergoes recovery (iNA) occur when (i) a compute node al-
located to the application fails, but no other failures that would
lead to network outage take place, including nodes, blades, and
cabinets (ii) internal and (iii) external to the application as well
as network links. Equation (3) expresses (ii), while (i) and (iii)
may be expressed as

pFdR(N−n)
(τ) = (1−Rd(τ)

nd)×Rn(τ)
(Nn−�nd

2 �)

×Rl(τ)
�Nd

12 � ×Rb(τ)
(Nb−�nd

4 �)

×Rc(τ)
(Nc−�nd

96 �).

(6)

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAFARY et al.: DATA-DRIVEN APPLICATION-ORIENTED RELIABILITY MODEL OF A HIGH-PERFORMANCE COMPUTING SYSTEM 7

Fig. 4. States internal to application recovery (i
NA

).

Combining (3) and (6) provides the probability the system
enters the application recovery state

piNA,i
NA

(τ) = pnbc(τ)× pFdR(N−n)
(τ). (7)

b) System working to network recovery (piNA,i
NA

): The
system enters the network recovery state when network re-
sources external to the application fail because failure of internal
resources leads to application recovery or both application and
network recovery. This probability of entering network recovery
can be written in terms of previous expressions such that

piNA,i
NA

(τ) = pnbc(τ)× (Rd(τ)
nd − pRdR(N−n)

(τ)) (8)

where resources internal to the application are reliable, but a
resource external to the application induces network recovery
because the two terms in parentheses contain an Rd(τ)

nd term,
which factors so that what remains in parentheses is the comple-
ment of the reliability of the resources external to the application
that correspond to entering network recovery.

c) System working to network and application recovery
(piNA,i

NA
): The system enters both application and network

recovery if a failure inducing application recovery and a failure
inducing network recovery occur within the interval τ between
two checkpoints

piNA,i
NA

(τ) = (1− pnbc(τ))

+ pnbc(τ)
(
(1−Rd(τ)

nd)− pFdR(N−n)
(τ)
)(9)

which corresponds to failures of application resources that
induce network and application recovery, and both terms in
parentheses contain (1−Rd(τ)

nd), which factors, meaning that
no application resource that would induce both application and
network recovery occurs (Rnbc), but a compute node allocated
to the application fails ((1−Rd(τ)

nd)) triggering application
recovery, and a network resource external to the application also
fails triggering network recovery.

2) Application Recovery: Fig. 4 shows the states internal to
application recovery, denoted by iNA in Fig. 3, as well as its one-
step transitions, including k retries down to the Failure state,
recovery to the network and application working state (iNA),
and network failure to the network and application recovery
state (iNA).

a) Retry to system working (pk−j,iNA
, j ∈ {0, . . . (k −

1)}): In addition to the logic of application recovery, which
is successful with probability (prA) or unsuccessful, as shown

TABLE III
APPLICATION RECOVERY INTERNAL STATE TRANSITION PROBABILITY MATRIX

in Fig. 4, it is also necessary to consider the probability of other
sources of failure prior to recovery. Therefore, the probability
of transition from the initial (k) or subsequent retries after j
unsuccessful attempts (k − j) to the application and network
working state iNA is

pk−j,iNA
= prA ×Rd(trA)

nd × pN (trA) (10)

where

pN (trA) = Rn(trA)
Nn ×Rl(trA)

Nl ×Rb(trA)
Nb

×Rc(trA)
Nc

(11)

because the logic of application recovery must complete suc-
cessfully, and compute nodes belonging to the application as
well as all network resources including those not allocated to
the application must not fail.

b) Retry to next retry (pk−j,k−(j+1)): The application per-
forms k retry attempts each of which requires time trA . If all k
retry attempts are unsuccessful, the application transitions to the
failure state and must then restart from the beginning (1NA). A
transition between two retries occurs with probability

pk−j,k−(j+1) = (1− prA)×Rd(trA)
nd × pN (trA) (12)

because the logic of application recovery does not complete
successfully, yet compute nodes belonging to the application
and network resources must not fail, as these failures would
lead to other state transitions described below.

c) Restart retry attempts (pk−j,k): When a compute node
experiences failure, the number of retry attempts is reset to k,
which occurs with probability

pk−j,k = (1− prA)× (1−Rd(trA))
nd × pN (trA). (13)

This transition makes the implicit assumption that the number
of compute node failures, which occur prior to job completion,
is small. In practice, applications request a small fraction of
additional resources, which may support this assumption.

d) Retry to network and application recovery (pk−j,i
NA

):
The only remaining transition is to the network and application
recovery state, which occurs with probability

pk−j,i
NA

= 1− (pk−j,iNA
+ pk−j,k(j+1) + pk−j,k) (14)

when the retry is unsuccessful and the compute nodes allocated
to the application are reliable, but a resource that induces net-
work recovery occurs before the end of the present recovery
attempt.

Table III summarizes the possible transitions between the
states internal to application recovery shown in Fig. 4.

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

Fig. 5. States internal to network recovery (i
NA

).

Fig. 6. Internal network and application recovery states (i
NA

).

3) Network Recovery: Fig. 5 shows the states internal to
network node recovery denoted iNA in Fig. 3 as well as its
transitions.

Network recovery undergoes a process similar to application
recovery described in Fig. 4. The probability of transition from
the initial (k) or subsequent retries to the application and network
working state iNA is identical to (10) with the exception that
prA is replaced by prN , which denotes the logic of network
recovery is successful. Times are also modified from trA to trN .
Unsuccessful retries are also similar to (12) with the substitution
of prA by prN . Unlike application recovery, however, network
node failures do not reset the number of retry attempts to k.
Occurrence of failure in cabinets, blades, links, or compute
nodes leads to network and application recovery. Thus, tran-
sition to the network and application recovery state occurs with
probability

pk−j,i
NA

= 1− (pk−j,iNA
+ pk−j,k−(j+1)). (15)

4) Network and Application Recovery: Fig. 6 shows the
states internal to network and application recovery denoted iNA

in Fig. 3 as well as its one-step transitions. When the system is
in the application and network recovery state, network recovery
must occur first because applications cannot proceed without
the network. Therefore, like network recovery, the probability
of transition from the initial (k) or subsequent retries to the
application recovery state iNA is identical to (10) with the
exception that prA is replaced by prN and time from trA to trN .
Therefore, transition to the next retry or Failure occurs with
probability

pk,(k−1) = (1− pk,i
NA

). (16)

IV. HIERARCHICAL MODEL SOLUTION AND

PERFORMANCE ANALYSIS

This section explains how to solve the hierarchical model
and conduct performance analysis. Section IV-A describes the

TABLE IV
ONE-STEP TRANSITION PROBABILITY MATRIX BETWEEN

WORKING AND RECOVERY STATES

hierarchical model solution process, explaining the method to
calculate the number of visits to each state of the model. Sec-
tion IV-B presents expressions for the total time spent in each
of the states of Fig. 3.

A. Hierarchical Model Solution

The model consists of two levels. The upper level comprises
the state representation of an application subject to network
outages given in Fig. 3, including the working and recovery
states, while the lower level includes the recovery state models
specified in Figs. 4–6.

Starting from the lower level, the first step is to solve for the
probability of transition to each of the terminal states in Fig. 4,
namely, iNA, iNA, and Failure. To accomplish this, we use the
one-step transition probability matrix P specified in Table III.
Each recovery state model is characterized by an absorbing
DTMC. To solve for the average number of visits to each state
of a DTMC [15], transitions to states with self-loops (absorbing
states) are set to zero in the transition matrix corresponding to
Fig. 4, including piNA,iNA

, pi
NA

,i
NA

, and failure pF,F . This
modified matrix is named Q, and ν = (I−Q)−1 is referred to
as the fundamental matrix. The entry νl,m indicates the average
number of visits to state m given that the process began in state
l. Since we assume without loss of generality that a recovery
attempt begins in state k, we are only concerned with the first
row of the matrix. Thus, we are interested in the average number
of visits to states iNA, iNA, and Failure, which can be visited at
most once on any individual visit to the application recovery state
in Fig. 4. Moreover, states are mutually exclusive and, therefore,
constitute a discrete probability distribution that sums to 1.

The sequence of steps, including matrix inversion, is per-
formed analytically with the equations contained in Table III
(P) and substituted into the upper level model as the transitions
probabilities pi

NA
,iNA

, pi
NA

,i
NA

, and pi
NA

,F . These values
are shown in the second row of Table IV, which represents
transitions between the states in a single column of Fig. 3, the
successor state (i+ 1)NA, and the Failure state.

A similar procedure is applied to the one-step transition
probability matrices for Figs. 5 and 6 according to the steps
specified in the discussion above, producing third and fourth
rows of Table IV.

The complete transition probability matrix for Fig. 3 contains
three blocks on the diagonal possessing the form of Table IV
for the two checkpoints with the complete specification shown
in Fig. 7, where each block is given by the first four columns
in Table IV, transitions to the Failure state are shown in column
13, and p4NA,4NA

= 1.0 represents the successful completion

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAFARY et al.: DATA-DRIVEN APPLICATION-ORIENTED RELIABILITY MODEL OF A HIGH-PERFORMANCE COMPUTING SYSTEM 9

Fig. 7. System state transition probability matrix.

state. The DTMC solution procedure is applied to this upper
level model, and the average number of visits to each state
commencing from the 1NA state is used in the next section to
conduct performance analysis.

The authors acknowledge that while the transition probabili-
ties of the DTMC representation of the system at both levels of
the modeling hierarchy can be taken from arbitrary distributions,
including those with a nonconstant failure rate, the memoryless-
ness property of the DTMC makes the implicit assumption that
the time to failure of components resets each time a new state
is entered. Thus, subsequent visits to a recovery or working
state do not suffer from increased probability of failure because
components have aged. An alternative approaches would require
Markov modeling with a large or even infinite number of condi-
tional states to characterize aging or simulation with more com-
plex mathematical expressions characterizing conditional fail-
ure rates. However, our results suggest that the model produces
reasonable estimates of system utility despite these simplifying
assumptions and enables a variety of useful inferences.

B. Performance Modeling

This section presents expressions for the total time spent in
each of the states shown in Fig. 3. The expression for the total
time spent in a working state is given by

ρiNA
= τ + (νiNA

− 1)

× [

(
piNA,i

NA
(τ)

piNA,i
NA

(τ) + piNA,i
NA

(τ) + piNA,i
NA

(τ)

)

E[HA(τ)]

+

(
piNA,i

NA
(τ)

piNA,i
NA

(τ) + piNA,i
NA

(τ) + piNA,i
NA

(τ)

)

E[H(N−n)(τ)]

+

(
piNA,i

NA
(τ)

piNA,i
NA

(τ) + piNA,i
NA

(τ) + piNA,i
NA

(τ)

)

E[Hn(τ)]] .

(17)

The first term (τ) corresponds to the time to complete the
computation prior to the checkpoint, while the number of the

visits to the states NA, NA, and NA is normalized and mul-
tiplied by the remaining number of visits to the working state
(νiNA

− 1), and E[Ha(τ)] corresponds to the mean time spent
in the working state prior to failure of an application’s compute
nodes, E[H(N−n)(τ)] network resources not assigned to the
application, and E[Hn(τ)] network resources assigned to the
application, where

E[H(τ)] =

∫ τ

0

R(t)dt. (18)

An upper bound on the total time spent on transitions between
working states performing checkpointing is

ρc =
�+1∑
i=2

νiNA
× tc (19)

where the index i begins at 2 because the first checkpointing
operation is performed between 1NA and 2NA and tc is the time
to perform a checkpoint. Equation (19) provides an upper bound
because νiNA

also includes visits that originate from the various
recovery states. We explicitly evaluate the pessimism introduced
by this bound in the illustrations and confirm that the impact does
not significantly affect the inferences enabled by the model.

The expression for the total time spent in the ith application
recovery state is

ρi
NA

=

k−1∑
j=0

νi
NAk−j

(pk−j,iNA
× trA + pk−j,k−(j+1) × trA

+ pk−j,k × E[HA(trA)] + pk−j,i
NA

× E[H(N−n)(trA)])

(20)

which is the sum of the number of visits to the (k − j)th retry of
the ith application recovery state given in Fig. 4 multiplied by the
sum of the probability of transitioning to one of four destination
states multiplied by the time spent prior to transitioning to that
state. Specifically, the probability of the application recovering
(pk−j,iNA

) and an unsuccessful retry attempt (pk−j,k−(j+1)) both
take deterministic time tra , while the probability of restarting the
number of retries to k (pk−j,k) takes average time E[HA(trA)]
corresponding to the mean holding time prior to the failure
of an application’s compute nodes within the duration of an
application recovery attempt (trA), and the probability of en-
tering application and network recovery pk−j,i

NA
takes time

E[H(N−n)(trA)] prior to the failure of an element that induces
network recovery. Similar to (20), the expression for the total
time spent in the ith network recovery state is given by

ρi
NA

=

k−1∑
j=0

νi
NAk−j

(pk−j,iNA
× trN + pk−j,k−(j+1)×

trN + pk−j,i
NA

× E[HNA(trN)]) (21)

where the only change to the first two terms is to replace the
time to perform an application recovery (trA) to the time to
perform network recovery (trN). The third term of (21) captures
the contribution of failures that contribute to the probability of
transitioning to network and application recovery (pk−j,i

NA
)

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

multiplied by the time spent prior to failure of any network
element or compute node (E[HNA(trN)]) that induces network
recovery prior to the end of the present network recovery attempt
(trN).

Finally, the expression for the total time spent in the ith
network and application recovery state is simply

ρi
NA

=

k−1∑
j=0

νi
NAk−j

(pk−j,i
NA

× trN + pk−j,k−(j+1) × trN).

(22)
Therefore, the expression for the total time is

ρ =
�+1∑
i=1

ρiNA
+ ρc +

�+1∑
i=1

ρi
NA

+
�+1∑
i=1

ρi
NA

+
�+1∑
i=1

ρi
NA

+ ρF =
∑
x∈X

�+1∑
i=1

ρix + ρc + ρF

(23)

where ρF = νF × trF and νF is the number of visits to the
Failure state, trF is the time spent restarting from failure, and X
is the set of working and recovery states {NA,NA,NA,NA}.

Thus, the fraction of the time spent performing computations
that lead to successful completion is

U =
tn
ρ
. (24)

In the ideal case, where there are no failures or checkpointing,
U = 1.0.

Performing sensitivity analysis on the parameters of the model
such as the failure rate parameters can be used to identify where
bottlenecks lower efficiency, thereby suggesting where to invest
efforts to lower failure rates of the various system components.

V. RESULTS

This section presents a series of examples to illustrate the
analysis and optimizations enabled by the model and is based
on the empirical parameters reported in Table I. The failure rates
given in Table I are failure rate parameters of the exponential
distribution. However, the model specification is general and
can accommodate any life distribution R(t) for the elements
of the system. We conclude the section with a discussion of
implications for future design challenges.

A. Point Calculation of Utility

This example explains how to calculate the fraction of the time
spent performing computations (U). For the sake of illustration,
the total computation time is tn = 6 h when distributed over
nd = 1000 compute nodes. There are � = 2 checkpoints. Thus,
(1) indicates that the length of the intervals is τ = 2.

Table V summarizes the transition probabilities from the
working state (iNA) as well as the results of the DTMC analysis
for the application, network, and network and application recov-
ery states described in Figs. 4–6, thereby providing the transition
probabilities for the system-level state diagram specified in
Fig. 3.

TABLE V
NUMERICAL VALUES FOR ONE-STEP TRANSITION PROBABILITY MATRIX

BETWEEN WORKING AND RECOVERY STATES

TABLE VI
NUMERICAL VALUES FOR NUMBER OF VISITS TO EACH STATE OF APPLICATION

SUBJECT TO NETWORK OUTAGES AND FAILURE

TABLE VII
TIME SPENT IN EACH STATE AND TOTAL TIME

Solving the system-level model specified in Fig. 7, the ex-
pected number of visits to each state of Fig. 3 is given in Table VI.

Moreover, the mean holding time spent in the working state
prior to failure of an application’s compute nodes isE[HA(τ)] =
1.987650, while the holding times prior to failure of network
resources assigned to the application and network resources
not assigned to the application are E[Hn(τ)] = 1.992760 and
E[H(N−n)(τ)] = 1.822700, respectively.

Substituting the values from Table VI into (17) and (20)–(22),
the times spent in the working and recovery states of the system-
level model are given in Table VII. Furthermore, the times spent
checkpointing and recovering from failure are ρc = 1.336020
and ρF = 0.600819, respectively. Therefore, the fraction of the
time spent performing computations is U = 0.558506. While
this value may seem low, it should be noted that in the case where
there are no failures, but two half hour checkpointing operations
are performed, the value of U is 6/7 = 0.857143. Moreover, to
assess the impact of the upper bound in (19), we consider the best
case, where each checkpoint is visited just once ρc = 1.0, which
produces a value of U = 0.576539, meaning that the pessimism
introduced (0.576539− 0.558506 = 0.018033) is less than 2%
for the numerical values considered.

B. Sensitivity to Number of Compute Nodes (nd)

To quantify the impact of the number of compute nodes on
utility, Fig. 8(a) plots U for a range of values up to all nodes
within the system on a logarithmic scale, holding all other model
parameters constant at the values used in the first example.

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAFARY et al.: DATA-DRIVEN APPLICATION-ORIENTED RELIABILITY MODEL OF A HIGH-PERFORMANCE COMPUTING SYSTEM 11

Fig. 8. Impact on utility with increasing (a) compute node and (b) cabinets.
(a) Impact of job size U . (b) Impact of the number of cabinets on U .

TABLE VIII
SENSITIVITY ANALYSIS

Fig. 8(b) indicates that utility decreases from 0.572590 to
0.291273 as the number of compute nodes increases. This is
anticipated, because expressions such as (4) for the probability
of not entering application or network recovery decreases as
nd increases. Thus, the model quantifies the degraded resource
utilization to be expected when additional compute nodes are
assigned to complete a computation more quickly without addi-
tional checkpoints.

C. Sensitivity to Total Number of Cabinets (Nc)

Similarly, to quantify the impact of the number of cabinets
on utility, Fig. 8(b) plots U for a range of values up to 1136,
which is four times larger than the Blue Waters system, from
which the empirical parameters were determined. All other
model parameters are held constant at the values used in the
first example. Fig. 8(b) indicates that increasing the number of
cabinets decreases the utility from 0.829505 to 0.337818, since
this increases the number of elements that contribute to network
outages regardless of the size of the number of compute nodes
assigned to the application running within the HPC environment.
This analysis suggests that simply increasing the scale of the
computing resources will degrade utility, and that methods to
support further scaling will be necessary.

D. Comparative Sensitivity Analysis

To illustrate how the model can be used to determine the
relative benefit of lowering failure rates, increasing recovery
probabilities, and decreasing recovery times, Table VIII provides

a sensitivity analysis, ranking these potential improvements to
the empirical model parameters.

Table VIII indicates that reducing the network node failure
rate by a factor of 2 would increase utility by over 10%. This
makes intuitive sense because network nodes are the most plen-
tiful type of component that induces network failures and has
the lowest mean time to failure, as specified in Section II-D.
This type of sensitivity analysis coupled with historical industry
trends and the corresponding economic investments required to
achieve these improvements can be used to objectively allocate
resources to improve system-level measures such as utility in
order to cost effectively enhance future systems, directly sup-
porting scalability for next-generation systems.

E. Discussion

The results obtained from the model suggest potential for
improvements in the future HPC system. Key takeaways include
the following.

1) Fig. 8(a) confirms that increasing the size of the appli-
cation, in terms of number of nodes, lowers the overall
system utility. Thus, to increase the overall utility, appli-
cation developers must attempt to decompose a large-scale
application into multiple instances of a small-scale appli-
cation. Furthermore, the industry trend is to build faster
and powerful compute nodes, which is becoming harder to
improve successive generations of processor chips, due to
the limitations of Moore’s Law [16], [17]. Increasing the
number of cores, scaling the frequency of cores, and speed-
ing up the memory subsystem should require fewer nodes
to complete the same computation. However, this poses
two additional challenges: a) this places the burden on the
application developer to take advantage of the powerful
nodes and b) it is difficult to achieve higher performance
per node for large-scale applications in practice, even after
refactoring the code due to either inherent bottlenecks in
the application code or jitter in the OS [18].

2) Fig. 8(b) shows that decreasing the number of cabinets
increases the utility of the system. Decreasing the number
of cabinets decreases not only cabinets, but also blades,
network nodes, compute nodes, and links that contribute
additional failure points. From Table VIII, it can be seen
that λn has a significantly greater impact on the overall
utility than λd. Thus, there are two possible ways to
build an equivalent HPC system (in terms of floating
point operations per seconds) with fewer cabinets: a) build
more powerful compute nodes or b) build more powerful
network nodes that can house two to four times more
compute nodes at the same levels of reliability (λn). As
discussed above, building powerful compute nodes comes
with its own caveats. However, increasing the number of
compute nodes per network node will decrease the number
of required cabinets, blades, and network nodes in the
system. The good news is that the HPC industry is al-
ready following this trend. For example, the network node
in Cray Aries-based systems [19] houses four compute
nodes. Our model suggests that there is further potential
for improvement to build powerful network nodes and

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

cabinets, if such a system design is technologically and
economically feasible.

3) Table VIII shows that checkpointing time (rank 2), failure
recovery time (rank 4), and network recovery time (rank 6)
can collectively play an important role to improve system
utility. Checkpointing time can be decreased by using
burst-buffer technology (NVRAM or SSD-based) [20]
to significantly increase the write speed for checkpoints.
Current network recovery techniques spend a significant
amount of time for a) collecting heartbeats from every
component and b) exploring the alternate routing paths in
the network. The time spent in these steps can be decreased
by parallelizing these methodologies.

VI. RELATED WORK

A. Failure Characterization of HPC Systems

Many HPC technical studies [21]–[23] have suggested that
the key challenges to achieve efficiency at exascale are energy,
memory, concurrency, and resilience. Faults and errors occur fre-
quently in large-scale HPC systems, requiring a range of recov-
ery techniques to provide error resilience and prevent failures.
Unsuccessful failure avoidance can lead to outage [24]. Hence,
the vast majority of work seeks to characterize and understand
the cause of failures such as fault propagation in HPC systems
at different levels of the system, including hardware [25]–[29],
software [25], [30], complete HPC systems [25], [31], [32],
and application failures [33]. These studies have demonstrated
the importance and potential widespread impact of failures in
supercomputers.

B. Checkpointing and Recovery

Not all system-level failures and recoveries can be transpar-
ently masked from user applications. Propagation of errors to
application leads to application failures. Previous work [33]
showed that 1.53% of applications fail due to system problems
and contribute to 9% of the production hour, which is equivalent
to a loss of $421 878 in energy bills alone. To minimize the loss
of compute node hours, applications employ checkpointing and
recovery techniques.

Young [4] proposed one of the earliest models to identify opti-
mal checkpoint intervals. This model assumes that the mean time
between failure (MTBF) of the system is very large compared to
the checkpoint and recovery time and, hence, did not consider
failures during checkpointing and recovery. Daly [34] subse-
quently presented a modification of Young’s model for large-
scale systems, which accounts for failures during checkpointing
and recovery as well as multiple failures in a single computation
interval. However, it does not model the coordination overhead
of the checkpointing protocol itself. Other models [3], [35] con-
sider the effects of correlated failures on checkpointing interval
and failures during application checkpointing. Their model does
not consider the recovery protocols of the system components.

Zheng et al. [36] developed an in-memory checkpointing
model when there are no extra compute nodes (or processors) in
the system. Like Plank and Thomason [37], we assume availabil-
ity of spare nodes to provide redundancy in the system to handle

permanent failures. However, unlike Plank and Thomason [37],
we do consider the overhead of coordination in their model or
the effect of scaling the model to a large number of nodes. Eg-
wutuoha et al. [38] conducted a survey of reliability and MTBF
expressions for HPC systems and discussed rollback-recovery
techniques developed over the years for HPC systems.

The goal of the models described above were to identify an
optimal checkpoint interval in order to enhance a measure of
system utility in the presence of failures, but did not consider
the hierarchical organization of the components within a system,
the distinct failure modes induced when resources allocated
to an application or the broader system fail, and the specific
recovery mechanisms undertaken in response to these distinct
failure modes. Therefore, the contribution of this article is a
performance (utility) model of an HPC system in terms of
its architecture, operating logic, and component failure rates.
The user-oriented approach avoids the state-space explosion
encountered in HPC models that attempt to simultaneously
model many concurrent applications. The model can serve as
the basis of sensitivity studies to identify factors that impact an
application’s utility as well as guide component upgrades and
related optimization problems.

VII. CONCLUSION

This article developed a hierarchical model of an application
that implements checkpointing running in an HPC environment
subject to application, network, and system-wide outages. Fail-
ures of hardware at each level of the HPC infrastructure as
well as the probability and time to recover from application,
network, and system failures were considered. Performance
analysis quantified the fraction of the time spent computing,
referred to as utility, as well as time spent checkpointing and
recovering from failures. Point calculation and a variety of
sensitivity analyses on the model parameters were conducted
with empirical parameters determined from Blue Waters. Our
results indicated that increasing the failure rate of network nodes
could most appreciably enhance application utility. However,
investment in this and the other alternative improvements must
be tempered by the historical trends and cost to achieve such
improvements. Additional studies on the number of compute
nodes and cabinets (system size) quantified how utilization is
expected to degrade as applications use more resources within
existing systems as well as within attempts to build exascale HPC
systems. While the modeling was performed for the Blue Waters
system, its approach is general and should also be applicable to
similar systems.

Future research will explore architectural generalization to
the models to facilitate analysis of a broad class of similar
systems. Many additional sources of failure and performance
can be considered to enhance the realism and completeness
of the model such as failure within checkpoints, failure of
storage elements, correlated failures, additional forms of fault
tolerance, application-specific software reliability, and optimal
checkpointing, including the situations where aging of system
components occurs between checkpoints and delays associated
with queueing/scheduling. In addition to seeking objective meth-
ods to enhance the utility of computation, we will also seek to

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JAFARY et al.: DATA-DRIVEN APPLICATION-ORIENTED RELIABILITY MODEL OF A HIGH-PERFORMANCE COMPUTING SYSTEM 13

develop richer notions of green and resilient computing, which
contrasts with traditional methods that are often restricted to
minimizing cost or maximizing throughput.

REFERENCES

[1] D. D. Deavours et al., “The Mobius framework and its implementation,”
IEEE Trans. Softw. Eng., vol. 28, no. 10, pp. 956–969, Oct. 2002.

[2] A. Pfeffer, “Figaro: An object-oriented probabilistic programming lan-
guage,” Charles River Analytics, Cambridge, MA, USA, Tech. Rep. 137,
2009, p. 96.

[3] L. Wang et al., “Modeling coordinated checkpointing for large-scale super-
computers,” in Proc. Int. Conf. Dependable Syst. Netw., 2005, pp. 812–821.

[4] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[5] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system intercon-
nect,” in Proc. IEEE Symp. High Perform. Interconnects, 2010, pp. 83–87.

[6] K. Antypas, N. Wright, N. P. Cardo, A. Andrews, and M. Cordery, “Cori:
A cray XC pre-exascale system for NERSC,” in Cray User Group Proc.,
2014.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Comput., vol. 22, no. 6, pp. 789–828, 1996.

[8] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” ACM Sigplan Notices, vol. 28, pp. 91–108,
1993.

[9] G. Almasi, “PGAS (Partitioned Global Address Space) languages,” in
Encyclopedia of Parallel Computing. New York, NY, USA: Springer, 2011,
pp. 1539–1545.

[10] G. Staples, “Torque resource manager,” in Proc. ACM/IEEE Conf. Super-
comput., 2006, p. 8.

[11] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The application
level placement scheduler,” in Proc. Cray User Group, 2008.

[12] S. Sankaran et al., “The Lam/Mpi checkpoint/restart framework: System-
initiated checkpointing,” Int. J. High Perform. Comput. Appl., vol. 19,
no. 4, pp. 479–493, 2005.

[13] Y. Feng, T. Di-Matteo, R. A. Croft, S. Bird, N. Battaglia, and S. Wilkins,
“The BlueTides simulation: First galaxies and reionization,” Monthly
Notices Roy. Astronom. Soc., vol. 455, no. 3, pp. 2778–2791, 2015.

[14] SPP-2017 Benchmark Codes and Inputs, National Center for Super-
computing Applications, Urbana, IL, USA, 2017. [Online]. Available:
https://bluewaters.ncsa.illinois.edu/spp-benchmarks

[15] K. S. Trivedi, Probability & Statistics With Reliability, Queuing and
Computer Science Applications. Hoboken, NJ, USA: Wiley, 2008.

[16] R. Colwell, “The chip design game at the end of Moore’s law,” in Proc.
Hot Chips 25 Symp., 2013, pp. 1–16.

[17] T. N. Theis and H.-S. P. Wong, “The end of Moore’s law: A new beginning
for information technology,” Comput. Sci. Eng., vol. 19, no. 2, pp. 41–50,
2017.

[18] D. Goodell et al., “Minimizing MPI resource contention in multithreaded
multicore environments,” in Proc. IEEE Int. Conf. Cluster Comput., 2010,
pp. 1–8.

[19] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network,” Cray Inc., Seattle, WA, USA, White Paper WP-Aries01-1112,
2012.

[20] W. Bhimji et al., “Accelerating science with the NERSC burst buffer early
user program,” Lawrence Berkeley Nat. Lab., Berkeley, CA, USA, Tech.
Rep., 2016.

[21] J. Dongarra et al., “The international exascale software project roadmap,”
Int. J. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60, 2011.

[22] A. Geist and R. Lucas, “Major computer science challenges at exascale,”
Int. J. High Perform. Comput. Appl., vol. 23, no. 4, pp. 427–436, 2009.

[23] P. Kogge et al., “Exascale computing study: Technology challenges in
achieving exascale systems,” Information Processing Techniques Office,
Defense Advanced Research Projects Agency, Arlington County, VA,
USA, Tech. Rep., vol. 13, 2008.

[24] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” IEEE Trans. Dependable
Secure Comput., vol. 1, no. 1, pp. 11–33, Mar. 2004.

[25] C. Di Martino, F. Baccanico, J. Fullop, W. Kramer, Z. Kalbarczyk, and R.
Iyer, “Lessons learned from the analysis of system failures at petascale:
The case of blue waters,” in Proc. Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., 2014, pp. 610–621.

[26] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications,”
in Proc. Perform. Anal. Syst. Softw., 2014, pp. 221–230.

[27] D. Tiwari et al., “Understanding GPU errors on large-scale HPC systems
and the implications for system design and operation,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit., 2015, pp. 331–342.

[28] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer, “Hauberk:
Lightweight silent data corruption error detector for GPGPU,” in Proc.
Parallel Distrib. Process. Symp., 2011, pp. 287–300.

[29] S. Jha et al., “Resiliency of HPC interconnects: A case study of intercon-
nect failures and recovery in blue waters,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 6, pp. 915–930, Nov./Dec. 2018.

[30] M. Sullivan and R. Chillarege, “Software defects and their impact on
system availability: A study of field failures in operating systems,” in
Proc. 21st Int. Symp. Digest Papers Fault-Tolerant Comput., 1991, vol. 21,
pp. 2–9.

[31] F. Cappello, “Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities,” Int. J. High Perform.
Comput. Appl., vol. 23, no. 3, pp. 212–226, 2009.

[32] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Trans. Dependable Secure Com-
put., vol. 7, no. 4, pp. 337–350, Dec. 2010.

[33] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study of
5,000,000 HPC application runs,” in Proc. Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw., 2015, pp. 25–36.

[34] J. Daly, “A model for predicting the optimum checkpoint interval for restart
dumps,” in Proc. Int. Conf. Comput. Sci., 2003, pp. 3–12.

[35] N. H. Vaidya, “On checkpoint latency,” Dept. Comput. Sci., Texas A&M
Univ., College Station, TX, USA, Tech. Rep. 95-015, 1995.

[36] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm: An in-memory checkpoint-
based fault tolerant runtime for charm and MPI,” in Proc. IEEE Int. Conf.
Cluster Comput., 2004, pp. 93–103.

[37] J. S. Plank and M. G. Thomason, “The average availability of parallel
checkpointing systems and its importance in selecting runtime parame-
ters,” in Proc. IEEE 29th Annu. Int. Symp. Fault-Tolerant Comput., 1999,
pp. 250–257.

[38] I. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault tolerance
mechanisms and checkpoint/restart implementations for high performance
computing systems,” J. Supercomputing, vol. 65, no. 3, pp. 1302–1326,
2013.

Bentolhoda Jafary received the M.S. and Ph.D. degrees in reliability engineer-
ing from the Department of Electrical and Computer Engineering, University
of Massachusetts Dartmouth, Dartmouth, MA, USA, in 2015 and 2019, respec-
tively.

She is currently a Reliability Engineer with AeroVironment, Simi Valley, CA,
USA. Her research interests include reliability modeling and maintainability.

Saurabh Jha received the bachelor’s degree in computer science and engineer-
ing from the Vellore Institute of Technology, Vellore, India, in 2014, and the
master’s degree in computer science in 2016 from the University of Illinois
at Urbana–Champaign, Champaign, IL, USA, where he is currently working
toward the Ph.D. degree with the Department of Computer Science.

His research interests include fault tolerance and reliability of mission-critical
systems.

Lance Fiondella (Member, IEEE) received the Ph.D. degree in computer science
and engineering from the University of Connecticut, Storrs, CT, USA, in 2012.

He is currently an Associate Professor with the Department of Electrical and
Computer Engineering, University of Massachusetts Dartmouth, Dartmouth,
MA, USA, where he is also the Director of the University of Massachusetts
Dartmouth Cybersecurity Center.

Ravishankar K. Iyer (Fellow, IEEE) received the Ph.D. degree in electrical
engineering from The University of Queensland, Brisbane, Australia, in 1977.
He is the George and Ann Fisher Distinguished Professor of Engineering with
the University of Illinois at Urbana–Champaign, Champaign, IL, USA, where
he holds appointments with the Department of Electrical and Computer Engi-
neering, the Coordinated Science Laboratory, and the Department of Computer
Science.

Professor Iyer is a Chief Scientist of the Information Trust Institute and an
Affiliate Faculty of the National Center for Supercomputing Applications.

Authorized licensed use limited to: University of Illinois. Downloaded on March 18,2022 at 02:59:48 UTC from IEEE Xplore. Restrictions apply.

https://bluewaters.ncsa.illinois.edu/spp-benchmarks

