
1

Resiliency of HPC Interconnects: A Case Study
of Interconnect Failures and Recovery in Blue

Waters
Saurabh Jha1, Valerio Formicola1, Catello Di Martino2, Mark Dalton3,

William T. Kramer1, Zbigniew Kalbarczyk1, Ravishankar K. Iyer1
1University of Illinois at Urbana-Champaign, 2Nokia Bell Labs, 3Cray Inc.

1{sjha8, valeform, wtkramer, kalbarcz, rkiyer}@illinois.edu;
2 lelio.di martino@nokia-bell-labs.com; 3 mwd@cray.com

Abstract—Availability of the interconnection network in high-performance computing (HPC) systems is fundamental to sustaining the
continuous execution of applications at scale. When failures occur, interconnect recovery mechanisms orchestrate complex operations
to recover network connectivity between the nodes. As the scale and design complexity of HPC systems increase, so does the
system’s susceptibility to failures during execution of interconnect-recovery procedures. This study characterizes the recovery
procedures of the Gemini interconnect network, the largest Gemini network built by Cray, on Blue Waters, a 13.3 petaflop
supercomputer at the National Center for Supercomputing Applications (NCSA). We propose a propagation model that captures
interconnect failures and recovery procedures to help understand types of failures and their propagation in both the system and
applications during recovery. The measurements show that recovery procedures occur very frequently and that the unsuccessful
execution of recovery procedures when additional failures occur during recovery causes system-wide outages (SWOs, 28 out of 101)
and application failures (3.4% of all running applications).

Index Terms—Networks, Reliability, Fault tolerance, Fault diagnosis

F

1 INTRODUCTION

THE resiliency of high-speed interconnect is fundamen-
tal to sustaining continuous execution of applications

in any high-performance computing (HPC) environment.
Job scheduling, application message exchanges, file system
operations, and remote access functionalities rely on the
continuous availability of a robust and fast network. To
this end, HPC interconnects are equipped with advanced
detection and recovery mechanisms to detect and recover
from most production failures.

While network recovery procedures are extensively
tested offline by system vendors, in practice they often fail,
causing partial or total system interruption (a system-wide
outage or SWO) and extensive downtime. Those failures are
caused by unforeseen situations that result from the extreme
scale of current systems and workloads and that can only be
measured through production data (i.e., logs and reports)
generated by representative systems. Understanding the
reasons behind failures of the failover1 of HPC interconnects
is crucial in designing novel resiliency solutions that can
keep the entire system available with limited or no negative
impact on user workload.

This paper presents an in-depth analysis of the efficacy
of the resiliency mechanisms of the world’s largest Gemini
high-speed network (HSN), deployed by Cray in the 13.3
petaflop Blue Waters supercomputer at the University of
Illinois. The study relies on the analysis of information

1. We use the terms ’failover’ and ’recovery’ interchangeably.

about 27 months of production failures contained in system-
generated logs (13 TB reflecting 76 billion events) and sys-
tem administrator failure reports between January 2013 and
March 2015.

To support extensive measurements and analysis of sys-
tem logs and human-generated reports, we built a compre-
hensive tool, FLOAT [1], an interconnect FaiLOver Analysis
Toolkit, on top of LogDiver [2]2. FLOAT generates recovery-
sequence clusters, which are time-ordered sequences of fail-
ure and recovery events that occurred in the context of a
network-level recovery procedure. Using recovery-sequence
clusters, we can evaluate the efficacy of the recovery proce-
dures and their impact on the user workload (e.g., failed
applications) and on the system (e.g., system-wide outages).

To the best of our knowledge, this is the first analysis of
resiliency mechanisms for a large interconnection network
that specifically demonstrates the significance of failures
that occur during recovery and the need for data-driven
approaches to network resiliency. Failures during recovery
procedures have not been well studied in the literature. The
three major observations and findings in this paper are as
follows:

1. In our measurement period, invocations of network re-
covery procedures are frequent, accounting for over 253,000
network recoveries. The vast majority of these are lane

2. LogDiver is a tool for the analysis of system- and application-level
resiliency in extreme-scale environments. It is currently being used by
national laboratories including Sandia, Los Alamos, and NERSC.

2

recoveries, which occurred, on average, once every 4.1 min-
utes. Lane recoveries succeeded with a probability of 0.99.
Link recoveries (which necessitate network-level rerouting)
occur every 59.52 hours. Link recoveries completed suc-
cessfully with a probability of 0.76 and were triggered 318
times in the system. This is important because whenever an
automated link recovery operation fails, the system requires
manual recovery, which in our measurement succeeds with
a probability of 0.64. Manual recovery is invoked every
702.86 hours (approximately once a month). The failure
of manual recovery causes an SWO, which requires a full
restart of the entire system. Those SWOs accounted for
27.7% of all SWOs encountered during the study period.

2. Ignoring lane recoveries, which are substantially
masked, the probability of a recovery being hit by an addi-
tional failure is 0.48. The probability that this additional
failure causes the recovery procedure itself to fail is 0.5.
We show that the probability of the occurrence of additional
failures increases with the duration of the recovery, rising
to a value of 0.8 when recovery time exceeds 300 seconds.
Importantly, our data shows that additional failures that
occur during recovery are due to either (1) independently
occurring faults with respect to the failure that triggered
the recovery initially (these constitute 15.6% of all failures
during recovery) and (2) lack of an adequate containment of
the failure originally triggering the recovery (these consti-
tute 84.4% of all failures during recovery), as exemplified in
section 5. This finding is contrary to the common assump-
tion [3], [4] that failures during recovery are low-probability
events to be ignored when addressing resiliency at large
scale. In fact, our in-depth analysis in partnership with Cray
Inc. revealed that recovery procedures are not aware of the
failures occurring during recovery; this is due to the lack
of a feedback mechanism. As a result, entities managing
the execution of network recovery operations (i.e., blade
controller or system management workstation (SMW)) are
not able to handle failures occurring during the execution of
the recovery procedures. The lack of feedback mechanisms
for recovery can be addressed by adopting the some of
the methods implemented in FLOAT, e.g., the ability to
distinguish between propagated and independently occur-
ring failures during recovery to applications and entities
managing recovery.

3. Temporary unavailability of the network during re-
covery causes errors and failures in the user applications
(e.g., application corruption and termination) and system
stack (e.g., deadlock, network partitioning, or loss of sys-
tem services). Quiescing of the Gemini network during a
recovery for long periods leads to packet drops, heartbeat
failures, and timeouts, which in turn can lead to failure
of applications and system services (e.g., job scheduling).
Our analyses show that applications can fail with a non-
negligible probability even during a successful recovery of
the Gemini network (probability of failure of running appli-
cations 0.007). While this result is for all applications, those
applications that execute on more than 50% of the system
nodes are 33.5 times more sensitive to the unavailability
of the network during recovery as compared with single-
node applications (13.4% and 0.4% probability of failure
during recovery for full-scale application and single-node
application, respectively). This demonstrates that network

is key to ensuring resilient execution of applications and
shows that even a successful recovery can still cause application
failures due to lost of packets and/or read/write failures.
Section 6 describes the impact of recoveries in more detail.
This work is significant because we:

• Developed methodology and tools, FaiLover Analysis
Toolkit (FLOAT), that
– formalizes and specifies recovery-sequence clusters

capturing failures and their propagation during net-
work recovery procedures

– helps to distinguish between propagated failures
(failures that are related to recovery) and indepen-
dent failures (failures that are independent of recov-
ery). This tool can assist in the development of failure
containment mechanisms using recovery-sequence
clusters

• Presented data-driven measurements and analysis to
quantify the importance of failures occurring during
the network-recovery showing vulnerability of sys-
tem/applications.

The rest of the paper is organized as follows — Sec-
tion 2 gives an overview of the system and description of
the FLOAT, Section 3 gives a breakdown on frequency of
failovers, Section 4 gives a characterizes on the progress of
recovery and failures occurring during the recovery, Section
5 describes three case studies showing the failures of the
recoveries, Section 6 gives measurements on application and
system impact, Section 7 describes limitations of the tools,
and finally, Section 8 describes related work.

2 SYSTEM OVERVIEW AND ANALYSIS FRAME-
WORK

Blue Waters is a Cray XE system hosted at National Center
for Supercomputing Applications (NCSA) in University of
Illinois at Urbana - Champaign. It has two types of compute
nodes — (a) 22,640 CPU only nodes, or XE nodes and (b)
4228 hybrid CPU + Graphical Processing Unit (GPU) [5]
based nodes, or XK nodes. Hybrid nodes were added later
to the system on July 2013. Each node has 64 GB of memory.
Blue Waters offers 26.4 petabytes of usable storage using
Sonexion storage solution [6].

This section describes the architecture and recovery ca-
pabilities of the Cray Gemini interconnection network [7] in
Blue Waters. The description is based on the limited infor-
mation available from the Cray maintenance manuals, the
Gemini design specifications [3], [7], and consultation with
maintenance specialists, system engineers of Blue Waters,
and Cray engineers. A detailed discussion of the Gemini-
based Cray system is available online at the Argonne Na-
tional Lab website [8].

In Blue Waters, 4 compute nodes (henceforth, referred to
as nodes) are packaged on a blade. There are eight blades
in a chassis and three chassis in a cabinet, for a total of 96
nodes per cabinet. Each blade is equipped with a mezzanine
card. This card contains a pair of Gemini ASICs (application-
specific integrated circuits), which serve as network nodes
(henceforth, referred as Gemini ASICs), are connected such
that each blade provides a 1x4x1 network-nodes of the over-
all (folded) 3D torus topology [9] (of dimension 24x24x24).

3

In Blue Waters high-speed network (HSN), ‘X’ direction pro-
vides connectivity between cabinets in a row, ‘Y’ direction
provides connectivity between rows, and ‘Z’ direction pro-
vides connectivity within the cabinet. The 3D torus network
and Gemini ASIC are shown in the “System” layer of Fig. 3,
where each cube is one Gemini ASIC. Each Gemini ASIC
in the torus network is connected to other ASICs by 10
connections, two each in X+, X-, Z+, and Z- and one each in
Y+ and Y-. Each connection is composed of four links, and
each link is composed of three single-bit, bidirectional lanes.
Thus, a connection consists of 12 lanes, and a Gemini ASIC
connects to another ASIC on the network via 24 lanes in the
X/Z dimension and 12 in the Y dimension. A channel is a
logical connection between two link end-points and consists
of two virtual channels VC0 and VC1. Further, each Gemini
ASIC (refer to “System” layer in Fig. 3) is housing (1) two
network interface controllers (NICs), (2) a Gemini router,
and (3) a network link block.
NIC. It is a hardware pipeline that has its own
HyperTransportTM3 [10] (HT3) interface. A compute-
node is attached to Gemini ASIC using the HT interface of
the NIC. NIC packetizes the compute-node requests (issued
via the HT interface) and generates packets on the network.
Packets are then routed across the network to a destination
NIC.
Gemini Router. This is a 48-port router used for routing the
packets across the network. It consists of tiles and routing
tables. Tiles are the basic building blocks of the Gemini
router, each consisting of one input port, one output port,
a 8x8 switch, and buffers for holding and moving data in
the router. A packet arrives at an input link of the tile. Using
the routing table and the switches, the packet is routed to
the desired output port. A routing table is used to store
mapping of links (and, therefore channels) to dimensions
along with input-to-output port mapping; this helps in the
directional-order routing. A routing-table-based design al-
lows the system to tolerate failures of network links/nodes
and at the same time allows maintenance of the system, such
as adding/removing/disabling of compute nodes/blades
in a live system (i.e., without shutting the system down).
Routing tables are installed and managed by the system-
management workstation (SMW) and are first initialized
during system boot. The mechanisms for installing and
managing routing tables are discussed in next subsection.
For packet routing, the interconnect system uses a packet-
adaptive, virtual-cut-through-based [11] directional-order
routing algorithm [9] across the network links, but it uses
wormhole flow-control [12] internally due to buffer size
constraints. Directional-order routing does the following:

• Routes the packet in X+/-, Y+, or Z+ until the X
dimension is resolved,

• Routes the packet in Y+/- or Z+ until the Y dimension
is resolved, and

• Routes the packet in Z+/- until the Z dimension is
resolved, at which point the packet must have arrived
at its destination.

A multidimensional torus interconnect is susceptible to
deadlocks due to possible: (1) dimensional turn depen-
dency cycles, (2) torus dependency cycles, and (3) re-
quest/response dependency cycles. Directional-order rout-

Link
Healthy

Lane
restoration

activity (10 s)

Run link in
degraded mode

Link Inactive

L0 detects
lane failure

Lane recovery
successful

Lane recovery failed,
No active lane

Lane recovery failed,
1 or 2 active lanes present

Fig. 1. State-transition diagram for lane recovery

ing helps to remove dimensional turn-dependency cycles.
The two virtual channels (VC0 and VC1) helps to prevent
request-response dependency cycle. Finally, to avoid torus
dependency cycles, Gemini router chips are divided into
two groups (CG0 and CG1). The deadlock avoidance tech-
niques are very similar to Cray T3D system (discussed in
detail by Mohapatra et. el. [12]).
Network Link Block. The network link block connects NICs
to Gemini routers and houses a supervisory block (SB) that
monitors and reports errors on the Gemini ASIC to blade
controller (L0), which relays the information to the SMW.
The L0 is connected to a system-management workstation
(SMW) through the Cray Hardware Supervisory System
(HSS) network (the HSS network is a separate network
dedicated to resiliency monitoring and supervision). System
responses to failures are orchestrated by the SMW.

2.1 Fault Tolerance and Resiliency
Gemini provides several levels of protection from errors
and failures. Packets are protected through a 16-bit cyclic
redundancy check (CRC) and are checked at each Gemini
ASIC (and between the transition from NIC to the router).
Most of the memory regions are protected with single
error correction-double error detection (SEC-DED) except
for routing table buffers. For path availability, there are
redundant connection in X/Z direction and links in each
connection have redundant lanes. Gemini connections and
links are capable of running in degraded mode upon failure
of lanes and links, respectively, until the failure(s) cause(s)
network partitioning. Failure of lanes/links or any other
network-component (such as router) are handled by recov-
ery mechanisms.

In this paper, we study three specific recovery mech-
anisms: lane recovery, link failover, and warm swap. We
summarize these recovery procedures (along with system
state) using state-transition diagrams (Fig. 1 and Fig. 2(a))
that include the associated timeouts (worst-case as config-
ured in the system configuration files located in SMW) in
parenthesis. Next, we describe these procedures in detail.

Lane Recovery, see Fig. 1. The availability of three lanes in
each link allows the Gemini network to tolerate up to two
lane failures and operate in degraded mode. If all three lanes
are permanently disabled/failed, the whole link is marked
as inactive by a link-failover procedure (Link Inactive). A
successful lane recovery restores the lane activity. Lane
failures are detected and handled by the blade controller
(L0). The L0 attempts lane recovery (via network link block
on Gemini ASIC) a certain number of times, as set in the
configuration file (for a maximum of 10 seconds), before
marking it as disabled.

Link Failover, see Fig. 2(a). Link failover is triggered when
a link becomes unavailable for one of the following reasons:

4

Link
failures
detected

Failover
started

Failures
aggregated

Mask link

Recovery
Success

Network
unquiesced

Active
blades

determined

Initiate
warm swap

Routes
computed

Network
quiesced

ASICs disconnected
Probe blades(30 s)

Compute routes
(300 s)

unquiesce
network (330 s)Cleanup

Initiate failover

Aggregate failures

No network node
disconnected

(10 s)

(10 s)

Links Masked

Determine
(new/removed)
links (180 s)

Quiesce
network and
install routes
(330 s)

(a)

System

Cabinet

Blade

Cabinet

Link

ASIC ASIC

Lane

Blade

Link

Lane

Node
Node

(b)
Fig. 2. (a) State-transition diagram for link failover & warm swap, (b) Fault-tree
diagram used for topological ordering and coalescing

(1) all three lanes fail in a link; (2) power is lost in a
mezzanine (32 links become unavailable), a blade failure (32
links unavailable), or a cabinet failure (960 links becomes
unavailable); (3) faulty cables; or (4) other reasons, such as
routing table corruption or software deadlock. Whenever
possible, the link-failover procedure masks the failed links,
avoiding network interruption. However, when a network
node (i.e., Gemini ASIC) cannot communicate with another
network nodes following the rules in the routing table
(because the rules are not valid due to failures), the failover
mechanism quiesces the whole network, i.e., interrupts the
network activity in order to install the routes safely. A
successful failover restores the communication path in the
network (i.e., there is no partitioning in the system). A
failed failover causes the whole network to fail, leaving the
system in an unusable state until it is repaired manually.
The link failover procedure (shown in Fig. 2(a)) can take two
paths, depending upon the type of the failure. When the
failure leads to disconnection between ASICs, the failover
procedure performs the following sub-procedures: (1) waits
10 seconds to aggregate failures (aggregate failures), (2) deter-
mines which blade(s) is/are alive (ASICs disconnected, Probe
active blades), (3) computes and asserts new routes (compute
routes), (4) quiesces the Gemini network traffic (and also
drain the network traffic) for installing the routes (quiesce
network), and (5) unquiesces the network (unquiesce network).
If the failure only causes the link to fail without disrupting
the communication between Gemini ASICs, the failover pro-
cedure masks the link, avoiding steps (3), (4), and (5). The
quiescing (coupled with traffic drainage) and unquiescing of
the network are important to ensure that no packet is being
routed in the system while the new network routes are being
established. This avoids any deadlock situation that may
occur during routing. Theoretically, the routing tables are
proven to be deadlock-free under no error conditions (such
as corruptions of routing tables or packets, and soft errors
on the Gemini ASIC), however the network can nonetheless
deadlock due to the above-mentioned errors.

Warm Swap, see Fig.2(a). Warm swap is the addition or
removal (disabling) of the compute blade/cabinet in a live
system. It is initiated by the system administrator manually
(initiate warm swap). The warm swap procedure is similar
to the link-failover mechanism with certain exceptions in
the stages of the recovery (e.g., initialization of new blades
and links). Apart from maintenance reasons, warm swap

procedure are also executed to recover from network-issues
when automatic recovery from failures do not succeed.

The state transition diagrams described above are the
only valid states and transitions in the system. If any sub
procedures of the recovery fail, the SMW tries again to
recover the failed component. If a sub-procedure does not
succeed after retries, it leads to failure of the recovery.
Failure of link failover or warm swap procedures may create
an SWO scenario, i.e., a situation declared jointly by system
administrators and the supercomputer vendor, that informs
users that the system is under stress/unavailable and that
they might experience application failures or significant
performance degradation. SWOs are situations in which the
system is not able to perform as expected. An SWO is not
a point event; instead, it starts at some time T (declared
by system administrators) and ends at T + R, where R is
the time needed to restore system-wide functioning. For
example, an SWO can be declared when more than a certain
number of cabinets fail or when application performance
is severely affected due to the high network congestion. A
failure in recovering the HSN can lead to an SWO. It is
important to note that not all failed failovers are declared
SWOs, since system may be restored immediately through
manual intervention.

2.2 Analyzed Datasets

The dataset considered in this work was generated by the
production system during the 2013-01-01 to 2015-03-31 time
frame. All the datasets and their usages in our analyses
pipeline are shown in Fig. 3, along with the number of
entries (i.e., number of lines as #) and size on the disk. The
datasets acquired directly from the system are shown in
dotted cylinders. These raw datasets are further processed
by LogDiver [2] and by FLOAT for network-resiliency study
(shown in colored non-dotted cylinders). More details on
the dataset can be found in [2], however for the sake of
completeness, we now briefly summarize the raw datasets
and datasets generated by LogDiver.

System Logs and System Events of Interest. “System
Logs” contain system events logged by the OS and by the
Cray HSS. Logs include (1) the time-stamp of the event; (2)
the facility, indicating the type of software that generated the
messages; (3) a severity level, indicating how severe each
logged event is; (4) the identification of the node generat-
ing the message; (5) process information, i.e., PID (process
identifier) about the process logging the event; and (6) an
event description. Those logs are filtered using a dictionary
of rules (coded as regular expressions that are specific to
Cray HPC systems) by LogDiver to create “System Events
of Interest”.
Torque Logs are generate by “Torque” [13], the resource
manager responsible for reserving system resources for a
job. Logs include information on created, canceled, sched-
uled, and executed jobs in the system. Torque logs are
parsed and stored in an intermediate representation by
LogDiver. Each entry in this intermediate representation
consists of multiple fields describing time information on
all phases of the job (creation, queue, execution, and termi-
nation times), user, group, queue, resources, type and list of

5

X

Y

Z
Torque ALPS

[A1]
User

submits
jobs

[A2]Reserves
resources

Blue Waters
compute system

[A3] Notifies ALPS
after reserving

resources

Torque
Logs

ALPS
Logs

[A4] Application
environment

setup and
execution

System
Logs

Maintenance
Logs

Consolidated
Workload

[S1] Parse
Torque logs

[S2] Parse ALPS
logs and aggregate

Sys. Events
of Interest

[S3] Extract & format
logs using regex

Parsed
Maintenance logs

[S4] Parse human
written reports

Recovery-sequence
Clusters (RS)

Impacted
Workload

[S7] Subset workload

#2.1E07/69 GB #2.8E08/66 GB #7.5E09/13 TB #4.1E03/1.5 MB

FL
O

A
T

Lo
gD

iv
er

C
or

e
Lo

gs

Gemini ASIC

Sy
st

em

matching and
aggregate
job info

app. information

running during

#4.4E05
6.3 GB

#3.2E09
716GB

#101
1 MB

RS clusters

HT3
NIC

HT3
NIC

Gemini router

SB Netlink
Block

HSN caused
SWOs

[S8] Subset SWOs
overlapping w/ RS
clusters

[S6] Run clustering
algorithm

Fig. 3. Overview of system, data sources, and analysis tools

used nodes, and wall time used.
ALPS Logs are generated by “application-level placement
scheduler” [14] responsible for application-environment
setup and initialization on the reserved nodes. Logs include
information related to the executed applications, exit codes,
a list of used nodes, exit reasons, the invoked launch script,
and the used walltime of each user application and job.
LogDiver consumes ALPS logs to produce an intermediate
representation in which each entry contains all the informa-
tion about an application in column format.
Consolidated Workload is a dataset generated by LogDiver
that combines parsed Torque logs and ALPS logs, giving
end-to-end information about the workloads executed on
the system. Such consolidation helps disambiguate user jobs
from staff jobs and helps to understand the failure cause of
the application. An application can fail due to system-errors,
user termination, wrong-input, or bug in the code.
Maintenance Logs and Parsed Maintenance Logs are gener-
ated by the NCSA maintenance specialists and consolidated
by Cray. Events are added to the failure report (1) upon any
failure that requires special corrective actions (e.g., a manual
reboot or repair of faulty hardware), and (2) upon events
that cause system downtime (SWOs). Over 4,000 incidents
were reported during this study, and they contained 101
SWOs. The failure reports are parsed into standard column
format, and SWOs are retrieved and stored (in “Parsed
Maintenance Logs”).

2.3 FLOAT: A Tool for Reconstruction and Analysis of
Recoveries from Logs

The goal of our work was to recreate network-recovery
scenarios in order to characterize recovery mechanisms,
understand the reason for their failures, to learn the impact
of their failures on applications and the system. To achieve
this, we augmented LogDiver [2] with FLOAT (shown in
Fig. 3), an interconnect FaiLOver Analysis Tool. FLOAT
enables us to increase understanding in this area by (1)
decoding Gemini error/failure logs and then clustering
errors, failures, and recovery steps (taken to contain and
manage failures) into recovery-sequence clusters (shown

in step 6); (2) retrieving applications that failed for system
reasons during network recovery (shown in step 7 in Fig.
3); and (3) retrieving SWOs that resulted from network-
recovery operations (show in step 8 in Fig. 3). We first
define our failure model and recovery model and then
discuss the clustering algorithm used in FLOAT to generate
“recovery-sequence (RS) clusters”.

Failure Model — In our model, a fault (e.g., lane congestion)
can lead to fault/error events. An event is represented as
– event name (time, location). Errors (e.g., packet drops) can
lead to errors/failures, and failures (e.g., link failures) can
lead to further failures with respect to interconnect system.
Faults/errors/failures propagate from some lower level in
the Gemini-interconnect system (the lowest level in our
model is a lane) to topologically higher levels (the highest
level in our model is the complete system). Thus, our model
resembles a fault-tree model with topological ordering as
shown in Fig. 2(b). Not all faults, errors, and failures are
logged in the system, however we assume that all failures
that trigger recoveries are logged in the system. The set of
all faults, errors, and failures is given by:

EF = {e| where e is any fault, error or failure event} (1)

Recovery Model — Interconnect-related recoveries are
launched after the failure or repair of an interconnect-
component (e.g., lane/link enable, disable, or failures). The
recovery proceeds according to the state-transitions de-
scribed in Section 2.1, and for each state there is a corre-
sponding recovery event that is logged in the system. In
case of failure of the recovery, depending on the recovery
type, the system retries the recovery N number of times
(e.g., 10 times for lane recovery) before stopping. In cases in
which the final completion status of the recovery is missing,
it is assumed to be a failed recovery. The set of all recovery
events are given by expression 2, and the set of all recovery
events that occurred at time t is given by expression 3:

ER = {e | e ∈ interconnect-related recovery events} (2)

ER(t, l) ={e| e ∈ interconnect-related recovery events at
time t and location l of occurrence of event} (3)

Clustering Model — A recovery-sequence cluster is a
combination of faults/errors/failures and recovery events
such that all events in the cluster are related to each other
(represented by P↔ operator) in time and space. A recovery-
sequence cluster CRS(t, l) at any time t and location l

is formally given by expression 5. P↔ is a mathematical
operator that tests and finds all events related to a given
event. An event e1 is related to another event e2 if and only
if (1) time(e1)−time(e2) ≤ fixed sliding window time (T =
120s), and (2) location(e1) = location(e2) or location(e1)
is topologically connected to location(e2) (by traversing up
or down the tree, but not both) as defined in the failure
model. If any two recovery or failure events at two different
locations are reachable, then the mathematical model creates
multiple copies of the cluster. This happens because for each
location a cluster is initialized with ER(t, l), but when the
failure/recovery events propagate and one is reachable from
another, each cluster having common events automatically
spans the other. Therefore, only unique recovery-sequence

6

clusters are retained. However, the clustering algorithm
can be implemented by maintaining a topological tree and
merging the two clusters whenever one overlaps with the
other. Further, the sliding window time was empirically
found based on the models proposed in [15], [16]. In these
studies, authors concluded that the optimum sliding win-
dow time is the knee of the curve drawn between the sliding
window time and the number of clusters obtained using
a clustering algorithm, as this decreases truncation errors
(splitting of a cluster into multiple clusters because of a
small value of sliding window time) and collision errors
(two events not related to each other merged into a single
cluster because of a large value of sliding window time). The
proposed clustering algorithm did not miss any network-
related recovery in the system. This is because whenever
there is a recovery event (in the log files) our clustering
algorithm initializes a recovery-sequence cluster, as shown
in expression 5. The examples of recovery-sequence clusters
are shown in Section 5.

E = ER ∪ EF (4)

CRS(t, l) ={e | e ∈ E and ∀ert ∈ ER(t, l), e
P↔ ert, where

e
P↔ ert denotes that e and ert are related}

(5)

3 BREAKDOWN OF FAILOVER FAILURES

In the following, we use the described methodology to pro-
vide a first set of statistics on the lane recovery, link failover,
and warm swap operations. During the considered time
frame of 27 months, we measured 253,000 lane failures, 318
link failures, and 559 warm swap initiations. Table 1 shows
the total percentage of recovery procedures that completed
successfully, calculated separately for lane recovery, link
recovery, and warm swap.

TABLE 1
Breakdown of the successful completion of the recovery
procedures. Confidence intervals are calculated using

Student’s t-distribution at alpha = 0.05 aggregated per month
Before Upgrade

(1/1/13-
10/31/13)

After Upgrade
(1/11/13-
3/31/15)

All
(1/1/13-
3/31/15)

Lane 98.4 ± 0.3 % 99.6 ± 0.7 % 99.1 ± 9.0 %
Link 53.8 ± 7.0 % 91.0 ± 20.2 % 75.8 ± 6.9 %
Warmswap 87.1 ± 2.7 % 96.4 ± 6.2 % 92.1 ± 3.0 %

Lane failover operations were successful 99.1% of the
time in masking/restoring the lane failures. Thus, the im-
pact of lane-recovery failures is limited, because a link can
typically withstand up to three lane failures (discussed in
Section 2). Since the lane recovery procedures run locally
on the blades and are managed by the blade controller (L0),
they may interfere with other recovery procedures managed
through the L0, such as link failovers and warm swaps, as
described in case study 3 (Section 5).

Link failovers were successful in only 75.8% of the cases.
Examining the recovery-sequence clusters, we observe that
the link-failover procedures failed because of additional
failures (e.g., of a node, blade, mezzanine, or link) during
failover and timeouts. A failed recovery could lead to a
situation in which the system must be recovered manually.
If the manual recovery is unsuccessful, an SWO is declared.
More details are provided in Section 6.2.

Warm swaps were successful 92.1% of the time. Warm
swap operations are performed by system administrators
for system maintenance reasons, or when the network be-
comes unrouteable. Warm swaps are launched carefully by
experts at fixed time intervals (e.g., twice a week) or during
system emergencies. Manual orchestration helps deal with
any additional failures that might occur during recovery.
Warm swaps are still susceptible to failures occurring natu-
rally in the system. Out of 559 warm swap procedures, 77 were
launched exclusively to manually recover the network (after a fail-
ure of the automatic recovery), of those only 63.6% succeeded.
A thorough analysis of the cause of failures of failovers is
discussed in the next section.

3.1 Time Between Recoveries
To understand the rate of recovery procedures, and failures
of these recoveries, we calculated (a) Mean Node-hours
Between Recovery procedures (MNBR) which takes system
scale (in terms of number of nodes) into account, and Mean
Time Between Recoveries (MTBR) which is a traditional
resiliency metric.

Mean Node-hours Between Recovery MNBR is calcu-
lated according to equation 6, where one node-hour equals
to one node’s up-time (either computing or idle) for one
hour. Our measurements take into account the actual node
hours (i.e., does not account for hours when the node
was unavailable due to failure or maintenance) for each
Blue Waters node in the 2 year and 3 month time interval
considered in this study.

MNBR =
Total node hours

Count of recovery events
, where (6)

Total node hours =
i=#Nodes∑

i=1

node-hour of node i (7)

Table 2 summarizes the MNBR for lanes, links, and
warm swaps for failed recovery procedures as well as the
total number of launched recovery procedures. Warm swap
procedures have lower MNBR, as these procedures are ini-
tiated multiple times on fixed days (twice a week) as part of
maintenance. A blade that is going to be warm swapped is
drained of any running job before the procedure is initiated.

TABLE 2
Mean Node-Hour Between Recovery (MNBR) events

Recovery MNBR of MNBR across
Procedure Type failed recoveries recoveries

(hours) (hours)
Lane recovery 211,813 1,934
Link failover 6,354,375 1,538,638
Warm swap 11,120,157 553,608

Mean Time Between Recovery
MTBR is calculated according to equation 8 where sys-

tem up-time is obtained by subtracting maintenance hours
and duration of all SWOs from operational hours. The mea-
surements show that lane recoveries, link recoveries, and
warm swap procedures are launched every 4.1 min, 59.52 h,
and 33.86 h (across all warm swaps), respectively. Note, if
we consider only those warm swaps that were launched to
handle failures of automatic recovery, the MTBR comes to
be about 703 hours.

7

0 200 400 600 800 1000

Duration of recovery (s)

100

101

102

C
ou

nt
Fail Success

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
(F

ai
lo

ve
r

fa
ilu

re
,
t
>

T
)

(a) Link failovers

0 200 400 600 800 1000

Duration of recovery (s)

100

101

102

C
ou

nt

Fail Success

0.0

0.2

0.4

0.6

0.8

1.0

P
(F

ai
lo

ve
r

fa
ilu

re
,
t
>
T

)

(b) Warm swaps

Fig. 4. Histograms of the completion times of single recovery procedures
for (a) link failovers and (b) warm swaps. Hatched black lines show the
failover failure probability after time t > T seconds

MTBR =
System up-time

Count of recovery events
(8)

3.2 Impact of software updates

The recovery software is a core part of the network design.
Thus, it is imperative to understand the effects of system
software updates on the successful completion of recovery
procedures. Table 1 gives the breakdown of the completion
status of recovery procedures before and after a major soft-
ware update (on November 1, 2013) in the SMW (a patch for
the recovery control software fixing design/code bugs). The
percentages of success of all of these procedures improved
significantly after the SMW software upgrade. The ratio of
failures of procedures to the total number of launched
procedures decreased by 4.0x for lane recovery, 5.1x for
link failover, and 3.6x for warm swap procedures. This
shows the importance of validating the network resiliency
software and protecting it against its own faults/failures.

4 RECOVERY CHARACTERIZATION

In this section, we characterize the recovery procedures to
understand factors causing their failures. In the remainder
of this paper, we focus only on link failovers and warm
swaps, given the high success rate of lane recoveries and
their negligible impact on the system.

4.1 Failover Completion Time Versus Probability of
Failure
The duration of a recovery procedure depends on the failure
type, the path taken by the procedure (refer to the recovery
state transition diagrams shown in Figs. 1 and 2(a)) during
the recovery, and the time taken to complete each stage dur-
ing the procedure. As a result, the durations of recoveries
are highly variable, ranging from < 1 s to ∼1,000 s. Fig.
4(a) and Fig. 4(b) show the histograms of the completion
times of the recovery procedures and the probabilities that
the procedures will fail after t > T seconds for link failovers
and warm swaps, respectively.

The histogram of the link failover procedures (see Fig.
4(a)) has four parts: region A (0 to 60 s), region B (60 to 240
s), region C (240 to 420 s) and region D (420 to 1,000s). To
explain the characteristics of this distribution, we analyzed
the completion time of the procedures based on the data
logs. Link failover procedures can finish in < 60 s (region

A) when the procedure (1) does not involve route recom-
putation, e.g., when the recovery procedure transparently
disables the faulty link (as discussed in Section 2) or (2) fails
very quickly (i.e., one of the early stages in the failover path
fails). When the network is partitioned, it takes longer to
compute, assert, and install new routes (around 180 s, region
B). In region B, the probability of success is higher than
the probability of failure of the recovery procedures. For
example, at time 240 s from the start of recovery, the success
probability is around ∼0.8, hence the failure probability is
0.2 (calculated as 1.0 − success probability). Region C and
D capture recovery procedures that have long completion
times (barely meeting timeouts) because of additional prob-
lems in recovering the system (e.g., cascading failures or
hangs of recovery procedures).

Fig. 4(b) shows a histogram of the completion times of
the warm swap procedures. There are three distinct peaks
(at ∼200 s, ∼600 s, and ∼1,000 s) in the plot. The first peak
corresponds to cases in which the warm swap procedures
disable blades/cabinets or fail quickly (because of timeout
of the first stage of the procedure, see Fig. 2(a)). The sec-
ond peak corresponds to cases in which the warm swap
procedure either adds or removes new nodes, blades, or
cabinets. The third peak corresponds to situations in which
warm swap procedures never complete (except for one case
in which it completes after 983 seconds); we set the upper
bound at 1,000 seconds, after which we mark the recovery
procedures as failed. The types of additional failures and
their impact on the ongoing recovery is explained in the
next subsection.

Across both type of recoveries (link failovers and warm
swaps), the probability that the recovery fails increases with
time, as shown by hatched black lines. For link failovers,
the failure probability starts increasing after 180 seconds.
The probability that the link failover fails after 240 seconds
is 0.7, and after 390 seconds it is ∼1.0 (i.e., link failover
always failed in our dataset after 390 seconds). This shows
that the link failovers are highly susceptible to the recovery
duration. Comparing the corresponding values for warm
swap procedures, we observe that warm swaps complete
successfully until 600 seconds. After that time, however, the
failure probability for warm swap procedures rises steeply.

There is a design trade-off in selecting the optimum time-
out values of the stages (i.e., sub-procedures) in recovery
procedures. The smaller the timeout values, the lower the
chance of additional failures during recovery. However, it
also means there is less time to complete all the required
functions in the sub-procedures before the timeout, causing
failures of the recovery procedures. On the other hand,
it is clear that the currently set of large timeout values
exposes the recovery procedures to additional failures. The
situation would be worse for future large-scale systems, as
they would require more time for calculating, verifying, and
installing routes, so the probability of additional failures
during recovery would be higher. Thus, it is important to
choose recovery procedure timeouts carefully and to optimize their
values for individual systems (depending on the scale). Recent
techniques, such as hierarchical callback-based timeouts
[17], would allow for sub-second failure detection, thus
reducing timeouts to smaller values whenever possible.

8

4.2 Characterization of Failures during Recovery

To facilitate characterization of the impact of additional
failures that occur during the recovery and their impact on
the system (in terms of propagation), we have divided the
space of all possible failure events during recovery into prop-
agated (84.4% of all failures during recovery) and independent
failure events (15.6% of all failures during recovery) with
respect to the ongoing recovery. A failure event type could
be a result of propagation (i.e., failure event has a relation
P↔ with the recovery) or independent occurrence (i.e., the
failure event has no relation to the recovery). However,
a failure event can be placed into one of the two cate-
gories through the analysis of recovery-sequence clusters
(described in section 2.3). Consider the case studies 1 and 2
discussed later in Section 5. The case study 1 shows that the
failure of the blade occurred due to failure propagation (i.e.,
failure of the pump gasket lead to the failure of mezzanines
which caused blades to become unreachable) whereas case
study 2 shows another example of blade failure which was
caused by faulty voltage regulator module (VRM Fault)
and hence, occurred independently of ongoing network
recovery. Formally, propagated failure events (EFP) and
independent failure (EFI) events are defined by Expression
9 and Expression 10, respectively. For the following analysis,
we consider only those independent failures that overlap in
time with recoveries.

EFP = ∪
t,l
CRS(t, l)− ER (9)

EFI = EF − EFP (10)

Not all events from the set of independently occurring
failures or propagated failure events prevent the successful
completion of the recovery. The events that adversely impact
the successful completion of the recovery are classified as
critical events. These events were obtained by evaluating
the conditional probability of the failure of the recovery
procedures given the occurrence of a failure event Ef from
the set of all events and use of domain knowledge. Table 3
lists the top 10 critical events observed in the system.

Fig. 5 shows the probability distribution of occurrences
of additional failures of types “independent,” “propagated,”
and “critical” over time. For the independent failures shown
in Fig. 5(a), the occurrence probability is much higher for
the first 180 seconds than for the rest of the observed
period. The reasons are that the bulk of the errors occur
in the first 200 seconds and that most of those errors are
machine-check exceptions (MCE). On further analysis, we
found that MCEs occur frequently in the system and that
during quiescence due to suspension of all CPU-related
activity, fewer or no MCEs are observed. Similar trend was
observed for propagated failures (shown in Fig. 5(b)). The
peak in the the errors is due to high packet and Lustre
file system [18] client-related errors occurring before the
network is quiesced successfully. Hence, the system is more
vulnerable to propagated errors in the first few seconds. In
summary, the probability of occurrence of a failure during the
recovery is nonzero, and additional failures can occur at any time
during the recovery.

Distribution of critical failures — Fig. 5(c) shows the
critical event occurrence probability distribution during

TABLE 3
Summary of critical events threatening successful completion

of recovery

Critical event CRFP1 MNBE2 AOT3 detection time
(hours) mean(s) median(s)

Routing table 1.00 4932 272.10 10
corruption
Routing fault 1.00 1031577 108.40 165
ASIC fatal 1.00 6189346 686.14 800
error
Route computa-
tion failure

1.00 12378693 1.20 1

ASIC chip 1.00 285750 32 31
error
SDB time out 1.00 44209618 Hang Hang
KRSIP 0.83 814 14.77 12
Link failures 0.85 11071 90.31 13.50
BMC time out 0.25 6877051 170.72 146
Auto-throttle 0.25 390 487.51 562

Terms — 1CRFP: Conditional recovery failure probability given the
occurrence of critical event, 2MNBE: Mean node hours between events,
and 3AOT: Ahead of time detection

recovery procedures. Because recovery procedures suffer
very few critical failures during their executions, we show
the probability that a recovery procedure suffered at least
k ≥ N failures (where N = 1, 4, 7) for failed and successful
recovery procedures in Fig. 6(a) and Fig. 6(b), respectively.
The probability that a recovery procedure suffers from
k ≥ 1 failure(s) increases at a higher rate for failed re-
covery procedures than for successful recovery procedures.
Similar trends are observed for k ≥ 4 and k ≥ 7 failures
during the recovery procedures. The increase is linear for
failed recovery procedures, but near zero in the case of
successful recovery procedures. By 500 seconds, all recovery
procedures have encountered at least one failure. Not all
failures are equally critical. The recovery procedure’s failure
depends on (1) the stage in which the recovery is executing
when the failure occurs, (2) the type of the failure, and
(3) the number of failures. The probability of the failure
of a recovery procedure given the occurrence of critical
events is summarized in Table 3 for the top 10 event types.
Failure events such as “routing table corruption,” “ASIC
fatal error,” and “ASIC chip errors,” “fan fault,” and SDB
(system database, used for maintaining the state of the
system) timeout always lead to recovery procedure failure.
“Route computation failure” could be due to additional link
failure(s) or timeout of the route computation phase. For all
the other events mentioned in Table 3, the conditional prob-
ability of recovery procedure failure is less than 0.85, and
those events lead to the failure of the recovery under specific
conditions (i.e., in combination of other failure events not
mentioned in the table). For example, auto throttling (for
which the the recovery procedure failure probability is 0.25),
which is a network congestion protection mechanism, can
lead to the failure of a warm swap during quiescence.

The events listed in Table 3 can be used as early indi-
cators for ahead of time (AOT) detection of the failure of
a recovery. The AOT detection values vary from as low as
one second to as high as 686 seconds. The ability to detect
failure of recovery procedures could potentially allow us to
terminate an ongoing recovery and restart from a recovery
phase instead of restarting from scratch after the current
recovery attempt fails. Terminate and restart (e.g., micro-
reboot [19]) techniques have been successfully deployed
in Linux-HA systems to orchestrate successful recovery
with minimal intervention from other failures. We plan to

9

0 200 400 600 800 1000

Duration of recovery (s)

0.00

0.05

0.10

0.15

0.20

0.25
Pr

ob
ab

ili
ty

 o
f e

rr
or

 ty
pe

 T ALL

(a) T = Independent errors

0 200 400 600 800 1000

Duration of recovery (s)

0.00

0.05

0.10

0.15

0.20

0.25

PM
F

of
pr

op
ag

at
ed

ev
en

ts

ALL

(b) T = Propagated errors

0 200 400 600 800 1000

Duration of recovery (s)

0.00

0.05

0.10

0.15

0.20

0.25

PM
F

of
cr

itic
al

ev
en

ts ALL

(c) T = Critical errors

Fig. 5. Probability of additional errors/failures during recovery

0 200 400 600 800 1000 1200

Duration of recovery (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y t
ha

t a
 re

co
ve

ry
 su

ffe
rs

fro

m
 K
≥

N
cri

tic
al

ev
en

ts
at

 tim
e

t <
 T

N=1
N=4
N=7

(a) Failed Recoveries

0 200 400 600 800 1000 1200

Duration of recovery (s)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

yo
fc

riti
ca

le
ve

nts
K
≥N

at
tim

et
<

T N=1
N=4
N=7

(b) Successful Recoveries

Duration in Seconds

0
0
0
0 ,,_.

(c) Probability density function and gamma fit

Fig. 6. Probability that a recovery procedure will suffer from k ≥ N critical errors/failures at time t < T for (a) failed recovery, and (b)
successful recovery. (c) Recovery-sequence cluster duration characterization.

extend this analysis in the future by using machine learning
methods to develop algorithms for runtime prediction of
recovery procedure failures.

In summary, the system is unprotected from other failures
that occur while it is executing recovery procedures. Additional
failures in the system can occur during the execution of
recovery procedures either in Gemini components or in
other parts of the system.

4.3 Duration of Recovery-Sequence Clusters
A characterization of duration of recovery-sequence clusters
using the probability density function plot (refer to Fig.
6(c)) indicates that the duration of the recovery-sequence
cluster is influenced by overlapping recovery procedures
and failures. This distribution shown in Fig. 6(c) can be
modeled as a gamma distribution with parameters (scale
= 0.73 s; and shape = 1,766.53 s). In this figure, 81% of
the recovery-sequence clusters have duration of less than
41 minutes, 50% have duration less than 15 min, and 25%
have duration less than 3 min. The tail of the distribution
includes 14 samples (not shown in figure for visual clarity)
all of which corresponded to SWOs. In this distribution,
most of the recovery-sequence cluster duration are small,
and the main contributions to the sample mean or variance
come from the rarely occurring long recovery-sequence
clusters (i.e., clusters with long duration). A good fit (the p-
value of goodness-of-fit was found to be 0.076) between the
modeled gamma distribution and observed data confirms
our observation that the time to completion of the recovery
sequence depends on the duration of the cluster. Gamma
process [20] is ideally suited to model gradual deterio-
ration that monotonically accumulates over time, such as
wear, and aging, which are common causes of failure of
engineering components (empirically confirmed from Fig,

4 for recovery procedures). Thus, the longer the lifetime of
a component (in this case recovery procedure), the higher
the chances of its failing. Due to the self-restarting nature
of the recovery upon additional failure, the duration of
the recovery-sequence cluster (which is composed of one
or more recoveries and their retries) gets elongated with
increasing recovery time, i.e., there is a component of auto-
correlation [20]. In a large-scale system like Blue Waters, the
time to complete the recovery can take up to 1200 seconds in
some cases (as discussed in Section 2.1). Using the analyses
from Fig 6, we argue that in a large-scale system, the recov-
ery procedures should be able to tolerate the occurrence
of additional failures/errors during recovery. Therefore, to
avert system-wide failures, the health supervisory systems
(HSS) of future large-scale production systems should be
capable of tracking failure events during the recovery which
can help to execute a recovery successfully. Our results show
that it is possible to track failures during recovery and take
proactive actions, as discussed earlier in this section.

5 CASE STUDIES

In this section, we describe three case studies showing
examples of recovery failure scenarios due to independent
and propagated failures. We also present a scenario in which
the system deadlocked despite successful recovery. Those
examples demonstrate the effectiveness of our tool and
analyses.

Figs. 7(a), 7(b), and 7(c) show examples of recovery
operations that failed due to the occurrence of failures
during their operations. We use a recovery-sequence cluster
diagram to show faults, failures, and associated recovery
actions initiated to restore the system. Each vertical line
represents a sequence of related activities (such as recovery
procedures or sequences of faults/failures related to the
same root cause) consisting of one or more events. Dotted

10

Pump gasket
problem

Link failover
failed

Blade EPO Link failover
beginsAdditional

links failed
Multiple

mezzanines
failures and

blades
unreachable

Route
computation
failed

WS
started

WS
failed

System
restored

Pump
gasket fixed

SW
O

tim
e

Start of recovery process

End of recovery process

Heat-related problems

Link failover

Warm swap (WS)

(a) Case Study 1

ti
m

e

Start of recovery process

End of recovery process

Cabinet
emergency
power off

Link failed

Begin Link
Failover

Route
computation
successCross

check fails

Failover
failed

VRM Fault

Blade
Failed

(b) Case study 2

Begin WS

Congestion
begins Warm swap

successful

Spurious
packets

sentRestarted
links causing

lane recovery

Lane fails

Lane
recovery

begins

Lane
recovery
fails and

lane
disabled System

rebooted

HSN
deadlocks

SW
O

Start of recovery process

End of recovery process

Lane recovery
Warm swap for
blade addition

Congestion
control

Deadlock &
restart

ti
m

e

(c) Case study 3

Fig. 7. Recovery-sequence cluster of studied case studies. Each vertical line represents a sequence of related activities. Dotted
circles, single circles, and double circles represent faults, failures, and recovery events, respectively. These events are temporally
ordered from top to bottom and left to right.
circles, single circles, and double circles represent faults,
failures, and recovery events, respectively. These events are
temporally ordered from top to bottom and left to right. An
SWO window in these figures shows the time window in
which system administrators declared an SWO.

Case study 1: Failure of an external cooling subsystem
that triggers an emergency power-off of a blade and subse-
quent widespread fault propagation. In this case (shown in
Fig. 7(a)), the failure of a pump gasket (pump gasket problem)
caused the temperature to rise in a cabinet. The overheating
triggered emergency power-off (EPO) of the blade (blade
emergency power off), a protection mechanism to guard the
blades from permanent damage. This event caused links to
go down, hence triggering link failover (link-failover begins).
As the link failover progressed, additional failures occurred
on other links in the same cabinet, caused by ASIC failures
(additional links failed). These failures induced further failures
in the route computations (routing computing failed); indeed,
the topology experienced changes from the time the routes
were calculated to the time the routes were asserted. The
failure of the route computation (and its retries) to establish
an alternative path for nodes to communicate with other
nodes in the system led to the failure of the link failover
(link-failover failed). At that point, the system administra-
tor tried a manual recovery of the system. However, as
the overheating effect increased and propagated to nearby
cabinets and blades, additional mezzanines failed (multiple
mezzanines failures and blades unreachable). This caused the
manual recovery attempt to fail as well. To solve the prob-
lem, an SWO was declared for several hours until the pump
gasket problem was detected and fixed. In this scenario, the
multiple network mezzanine/blade failures (“multiple mez-
zanines failures and blades unreachable”) were the result of
failure propagation from the pump gasket failure (“pump
gasket problem”). However, the SMW knows only about the
failures and knows neither about the propagation nor the
cause of this propagation. The failure of recovery operations
was due to the inability of the recovery procedures to
recover from multiple failures occurring in close proximity
in time, i.e., the time between the failures was less than the time
required to orchestrate a successful recovery operation.

Case Study 2: An independent failure during a failover.
Fig. 7(b) shows an example of a failure recovery operation
due to an independent failure of a component (“Blade
Failed”) during recovery. Unlike the previous case, in this
scenario a blade failure occurred independently of the fail-

ure and recovery events, i.e., independently of “cabinet
emergency power off,” “link failed,” and recovery events
marked in green in the figure. The failure of the blade
was caused by “VRM fault” (voltage regulator module),
which is responsible for providing electric power to the
blade. However, for a SMW charged with management of
recovery of network components, a blade failure caused
by propagation (as in previous case) and one occurring
independently are identical. The SMW cannot distinguish
between the two types of blade failure and thus initiates
exactly same recovery sequence in either case. In this case,
the system activity is interrupted after the failure of the
failover (“Failover failed.”) A warm-swap procedure was
executed manually by sysadmin to immediately restore the
system functionality. Hence, this incident was not declared
as SWO.

To counter the problems studied in case study 1 and
case study 2, we argue for using the monitoring of data
to dissect relationships between failures and for under-
standing the cause of failures in real time to help manage
failures more accurately. For example, in case study 1, SMW
could have sent alerts to sysadmin for repairing the pump
gasket before initiating recovery or could have completely
removed/killed the offending cabinet from the network
topology using a technique called “STONITH” (i.e., Shoot
The Other Node In The Head). For situations like case study
2, the network-recovery can retry the recovery with slightly
higher delays between retries (exponential backoff) with
some upper-limit threshold. Monitoring and dissection of
the cause of the failure could help decide between strategies
(e.g., between STONITH, exponential backoff, or predictive
mitigation (discussed elsewhere)).

Case Study 3: An example showing that a successful
failover does not necessarily lead to a consistent system
state. This example also captures failure propagation in
the system. Fig. 7(c) shows a successful warm swap oper-
ation that triggered a latent design bug (in the initializa-
tion software), causing network deadlock and congestion.
Initially, a single lane failure triggered the lane-recovery
procedure. The lane recovery failed, causing the lane to be
disabled permanently (lane recovery fails and lane disabled).
Soon after the lane recovery failure event, the system ad-
ministrator (as part of an unrelated maintenance procedure)
launched a warm-swap procedure to add blades (begin warm
swap) to the system. During the warm swap, one of the
sub-procedures checked and initialized newly added links.

11

Because of a design bug in the initialization software, that
sub-procedure, in addition to initializing newly added links,
also reinitialized other alive links in the system, causing
the disabled lanes to be re-enabled (lane recovery fails, lane
disabled permanently). Although the warm-swap procedure
eventually succeeded, it forced a resend of old packets
stored in the card buffers of the disabled lanes. Since the
addition of blades changed the routing information on
the nodes, the spurious packets set with the old routing
information were rerouted by Gemini using the new routing
information. This caused a deadlock of the HSN (HSN
deadlocks). Although the Gemini interconnect has built-in
provisions to avoid such dependency cycles in routing paths
of packets, a deadlock can still occur because of corrupt
routing information in the ASICs (routing table corruption) or
the sending of packets with incorrect/stale header informa-
tion, as in this case. The deadlock further led to congestion
(congestion begins) due to blocked paths in the network and,
consequently, activated congestion-avoidance mechanisms
(i.e., network throttling). At that point, all applications were
stopped and a full system restart was required to restore the
system operations, forcing a termination of the jobs.

The foregoing scenario revealed a bug in the warm-swap
procedure, which Cray engineers fixed with a patch. The
fix avoided the reactivation of previously disabled links by
initializing only the links connected to the newly added
blades. This scenario illustrates one possible reason for an
invalid system-state at the end of a successful recovery, and
one possible cause of application failures during a successful
recovery. These examples demonstrate that tracking of the
failures in a system and maintenance of a consistent global
system state with respect to errors and failures, is essential to
enhancing robustness of failover procedures. For example,
the ability of system state tracking could be useful for help-
ing a scheduler avoid placement of jobs during recovery,
and for helping a file system coordinate its own recovery
with the network recovery.

6 IMPACT OF FAILOVERS

In this section, we describe the impact of recovery proce-
dures in terms of error propagation, system-wide impact,
and application failures.

6.1 Error Propagation in the System
Failovers, irrespective of their exit status, cause additional
errors in the system. During recovery procedures errors do
propagate and frequently manifest as timeouts (e.g., timeout
of client running on compute node which is trying to contact
the file system) and corruptions (e.g., misrouted or dropped
packets in the network).

For instance, Fig. 8(a) shows the average number of
packet errors (dropped packets, misrouted packets, or cor-
rupted packets) across all interconnect recoveries; Fig. 8(b)
shows a similar propagation for other kinds of errors (file-
system errors, scheduler errors and system services). The
reason for such propagation can be adduced to the recovery
mechanisms in other parts of the system, which rely on
the network recovery to succeed quickly. For example, the
MOAB job scheduler can be negatively impacted by the
quiescence phase of the recovery procedure. During the

quiescence MOAB may fail to contact the “application level
placement scheduler (ALPS)” client running on nodes to re-
move applications and reset the nodes. Similarly, during the
quiescence, applications can drop an ongoing connection to
the file-system (“client eviction”), as shown in the example
in Fig. 8(c). The issue of overlapping network quiescence
with the file-system recovery has been partially addressed
in Lustre through the use of imperative recovery [21]. Imper-
ative recovery accelerates reconnection between application
(running on compute node) and storage via notification and
callback mechanism instead of using timeouts. A detailed
discussion on imperative recovery can be found in [21]

The number of packet-related errors during recovery
procedures is initially very high due to unavailability of
the network components (that have failed). The system is
designed to stop the injection of packets during quiescence.
Hence, packet-related errors decrease sharply from 4 to 5
orders of magnitude in the initial phase of the recovery
procedures to few hundred seconds in the latter phases.
However, our in-depth analyses suggest that the quiescence
and CPU stalling is not perfect (as there is non-zero delay
in quiescing the whole network) and there is a chance
of packets leaking or getting lost during the quiescence
phase of the recovery procedures. This loss of packets
negatively impacts MPI-based applications which assume
reliable packet delivery.

Similar trends were observed for other errors (i.e., file
system, scheduler and system services) during the recovery
procedures. The initial peek in the errors (refer to Fig.
8(b)) is due to Lustre connection problems (message drops)
and client failures. As time passes, the number of errors
decreases, but more critical events are triggered because of
timeouts. For example, Lustre network routers (LNet) fail
after 40 seconds (due to timeout) of the quiescence. Forty
seconds is the default timeout value for the routers before
they initiate their recovery. Fig. 8(c) shows a typical failure
propagation scenario in the file system due to interconnect-
related recovery. The problem starts with a network com-
ponent failure, and a corresponding recovery is triggered
to restore the system. However, during this recovery all
the LNet routers (which are used to communicate between
the compute cluster and storage cluster) connected using
Gemini ports become unavailable due to the quiescence
of the network as mentioned earlier. Unavailability of the
LNet router leads to the failure of the Lustre clients that are
communicating (after a timeout expiration), as servers and
clients cannot ping each other due to loss of LNet routers.
Cray and NCSA have deployed imperative recovery [21]
to protect from some of these cases. Our dataset does not
contain the recovery procedures after the deployment of
this new feature, and thus we are unable to investigate its
usefulness.

6.2 Impact on System Infrastructure

In this subsection, we dissect the reasons for the 28 SWOs
caused by interconnect-related recoveries. The breakdown
is shown in Table 4 and described below.

Handshake issues. In those cases, SWOs occurred be-
cause of improper/no handshake (e.g., throttling during
quiescence) and timeout issues (e.g., blade controller not

12

0 200 400 600 800 1000 1200

Duration of recovery (s)

10−1

100

101

102

103

104

105

M
ea

n #
 of

 er
ro

rs
of

 ty
pe

T d

ur
in

g r
ec

ov
er

y ALL

(a) T = Packet errors, caused by recovery
procedures

0 200 400 600 800 1000 1200

Duration of recovery (s)

10−2

10−1

100

101

102

103

104

105

Me
an

#o
fo

the
re

ve
nts

du
rin

gf
ail

ov
er

ALL

(b) T = File system, scheduler and system
services errors, caused by recovery proce-
dures

(c) Propagation of errors in the file system

Fig. 8. Propagated errors characterization for packets (a) and other components (b); an example case study for propagation of errors in file system
due to network errors

TABLE 4
Breakdown of SWOs reasons and their occurrence count

SWO Reason #Count
Handshake issues 16
Network deadlock 4
Concurrent recoveries in the
file-system and network 5

Occurrence of independent failures
negatively impacting the recovery 3

responding during route computation phase of the recovery
and timing out). As pointed out earlier, the interconnect
recovery procedures consist of multiple phases, each with
its own timeout value. A timeout can expire due to either
(1) failure in coordinating with other services/components
(e.g., L0s, or system database) or (2) inability to complete
some computations (e.g., the new routes computations or
pings) within a fixed time window. Those timeouts are
defined in system configuration files. Some of the timeout
values depend on system-scale (such as routing time out
value), whereas others are fixed (such as lane masking)
and cannot be configured because of hardware/technology
requirements and limitations.

Network deadlock. SWOs were due to HSN deadlock
caused by soft errors in Gemini ASIC (such as routing table
corruption and Gemini ASIC logic failure due to soft errors).
In three cases, the deadlock was due to routing table cor-
ruption, whereas in one case deadlock was caused by ASIC
logic failure (e.g., due to soft errors). Although those errors
are transient, in a live system, they can lead to deadlocks.
Routing table corruption happens due to the corruption
in the buffer that stores the routing tables. Routing table
buffers are not protected by error-correcting codes (ECC),
and hence routing table corruption (e.g., due to soft errors
and/or bad data being written when populating the routing
table) is a real possibility. To prevent such errors, Cray in-
stalled a patch (in early August 2013) in the system to create
back-up copies of routing tables, to be used for periodic
checking of routing tables on the Gemni ASICs. For safely
correcting the routing tables (i.e., replacing the corrupted
routing table with the backup), the network activity on the
corrupted router is interrupted throughout the duration of
correction. Most of those interruptions are treated gracefully.
However, in some cases, by the time new routing tables are
calculated, there might already be network packets sent out
with wrong routing headers. These spurious packets create
cyclic paths, leading to a network deadlock.

Concurrent recoveries in file-system and network.
Interconnect-related recoveries overlapped with Lustre file-

system recovery procedures, which led to SWOs. In one
case, an interconnect recovery operation led to failures of
several Lustre file-system clients (because of the quiescence
phase of interconnect recovery operation) that triggered
Lustre recovery procedures. Although, the interconnect re-
covery was successful, the Lustre recovery procedure was
unsuccessful. This is shown in Fig. 8(c) and described in
previous subsection.

Occurrence of independent failures negatively impact-
ing the recovery. Those SWOs were due to independent
failures (i.e., failures having no relation to the recovery) that
occurred during a recovery procedure. Section 4 discusses
these additional failure types in detail. Such failures are hard
to handle unless a global view of the system state is built to
synchronize recovery activities and to eliminate or protect
from unexpected interference among these activities.

6.3 Impact on User Applications
We characterized the impact of recovery operations on the
system workload by computing the number of applications
failing due to network-related failures and recoveries on
the nodes involved in the recovery. The recovery intervals
considered are the time windows that include successful
network recoveries, failed network recoveries, and system-
wide outages (caused by network recoveries). In total, we
had 438,796 applications running in the time window of the
network recoveries. Table 5 shows a breakdown of number
of application (app) runs at different scales (in terms of
number of compute nodes) and percentage of application
failure at that scale. From Table 5, it can be inferred that full-
scale applications (i.e., applications using more than 50% of the
available nodes) are 33.5 times more sensitive to the unavailability
of the network during recovery than are single-node applications.

TABLE 5
Breakdown of applications (apps) runs at different scale (i.e.,

number of compute nodes) and % failure in that scale
Scale #XE nodes #XK nodes #Apps Failures (%)
Single ≤ 4 (1 blade) 305472 0.40
Nano ≤ 96 (1 cabinet) 117271 1.70
Low ≤ 512 (1 row) 12609 2.00
Med ≤ 5896 (25% sys) ≤ 1056 (25% sys) 3047 4.17
High ≤ 11792 (50% sys) ≤ 2122 (50% sys) 240 4.58
Full > 11792 > 2122 157 13.38

Further, we compared the percentage of application fail-
ures during successful and failed recoveries. In the studied
period, 3.4% of running applications failed during unsuc-
cessful recoveries compared to only 0.7% of application fail-
ures during successful recoveries. Thus, there is non-negligible

13

chance of application failures during network recovery even in
cases when the recovery completes successfully.

Next, we compared the percentage of application failures
during the Gemini recovery operations with the application
failures during normal system operation. The total up-time
of the system (i.e., operational hours) from January 2013 to
March 2015 was 18,926.6 hours, and the total time spent
for network recovery was 91.56 hours. The total number
of applications that failed was 50,874, out of which 3,591
failed during network recovery. The mean time between
application failures for reasons other than Gemini is 18,926.6
/ 48,443 = 0.39 h, hence the failure rate is 2.6 failures
per hour. The mean time between application failures for
network recovery is 91.56 / 3,591 = 0.025 h / failure, hence
the failure rate is 40 failures per hour.

Finally, we sampled 25 days of Blue Waters workload
that specifically had no system software or component
failures. The percentage of application failures during those
25 days is close to zero regardless of the application scale.
Through those analyses, we show that failover procedures
(regardless of whether they are successful) impact applications and
frequently lead to application failures.

The failure cause of an application and the events lead-
ing to this failure (i.e., fault-to-failure propagation path)
can differ significantly for different applications depend-
ing on runtime-framework (such as MPI [22], charm++
[23], PGAS [24]) and system-state. Due to the limited log-
ging/monitoring capabilities of the system and to the di-
versity of application frameworks (and their network usage
profiles), deciphering the complete fault-propagation path
leading up to the failure of the application is intractable
or very hard. However, our study allowed us to make the
following three general observations, which we elaborate
through examples.
•We found charm++ applications to be tolerant towards

recovery procedures. When we looked at three large-
scale charm++ applications [25] — NAMD, ChaNGa, and
Episimdemics — only ChaNGA was seen to have a higher
failure probability (0.08), whereas other charm++ applica-
tions only failed once. Charm++ employs different collab-
orative checkpoint/restart mechanisms (disk and in-RAM
checkpoint implemented as part of the FTCharm++ library
[26]), all relying on error detection performed by means of
heartbeat. There are two phases in the checkpoint support.
In the first phase, after reaching a global synchronization
point, each node stores its checkpoint in the main mem-
ory. After every node safely stores the newest copy of the
checkpoint, the normal execution resumes. The Charm++
runtime system is responsible for creating a backup copy of
each checkpoint on another node. When a processor crashes,
the restart protocol is automatically invoked to recover
all objects using the last checkpoints. This technique can
successfully recover from one or more failures at a time, as
long as all the nodes storing backup checkpoints are alive.
• GPU (Graphical Processing Unit) applications (running

on Cray XK nodes) are most vulnerable to network-related
failures and recovery procedures. For example, the failure
probability of “AMBER” [27] was seen to be as high as
0.20. In general, for all GPU applications running on more
than 100 nodes, we observed high failure probability during
recoveries and network-related failures. GPU applications

can fail when using GPUDirect [28] due to PCIe-related
errors (as GPUs and PCIe interfaces cannot be quiesced)
unlike network interface cards, which are quiesced during
network recovery.
• Finally, PGAS (Partitioned Global Address Space) ap-

plications are vulnerable to network failures and recover-
ies. PGAS applications require ordered message delivery
capabilities and atomic memory operations. Some of the
atomic transactions (such as “atomic-add-one”) cannot be
replayed or retried safely in case of failures due to the
limitations of the transaction commit protocol. For example,
if an application process on compute node A sends an
atomic memory operation to compute node B (say “atomic-
add-One” to some memory location), that “happens” in
hardware. During link-failures and recoveries, requests to
remote node B or response from remote node B can get
lost. In case the response is lost and the network simply
replays the transactions, it would make the final result
increment by two instead of one. Such scenarios can be
handled either using two-phase commit protocol in the
network layer or by application-specific exception handling
in the code. However, PGAS jobs tend to rely on a lot
of small transactions and such an overhead would slow
down the application. Hence, PGAS-based applications, in
general, do not tolerate lost transactions and trade resiliency
for higher performance. This leads to failure of PGAS-
based applications during such scenarios. We measured
failure probability of PGAS-based applications across many
different application types3, and found it to be 0.4 during
network-recoveries.

7 LIMITATIONS

An empirical study like ours has limitations when it comes
to applying the findings to other systems and domains.
Here, we comment on the threats to the validity of our
study under three axes: construct validity, internal validity,
and external validity.

Construct validity implies that variables associated with
the study are measured correctly, i.e., that the measurements
are constructed in accordance with theoretical foundations
in the area. In this study, we analyzed field-failure data
from over 27 months of operational time for calculating
various resiliency metrics, such as MNBR, in order to en-
sure statistical significance of those metrics. However, the
measurements discussed in Section 4.2 can be subjected to
internal validity, which is discussed next.

Internal validity implies that there are no systematic
errors and biases. In any distributed system, the validity
of time stamps across machines can be questionable due
to clock drift and skew. Since our measurements involve
measuring probabilities of failure with time (at seconds-to-
minutes intervals), the metrics presented in subsection 4.2
are potentially susceptible to small variations. However, we
believe the sliding window time (T = 120s) chosen in this
study is greater than the expected clock drift in the system.
Further, to eliminate any event-selection bias (the filtering
stage of the tool) and to ensure the correctness of our tool
(FLOAT), we took the following two additional steps:

3. No single PGAS-application was found to be running statistically
number of time during failover.

14

• Worked with the vendor and system engineers to
choose events for filtering.

• Conducted our own fault injection experiments to test
the validity of chosen events and the capability of
the clustering algorithm to capture network-related
events [29].

External validity concerns the extent of generalization
of a study to other systems. The logs generated and col-
lected in this study are very specific to Cray Gemini-based
systems. However, the tools and methodology presented in
this paper can be adapted to newer a generation of systems.
In particular, we have tested our tool on the Cray Aries
(DragonFly network) system (Edision) [30] at NERSC.

8 RELATED WORK

Previous HPC failure studies have focused on the measure-
ments of mean time between failures (MTBF), availability,
and reliability of the system [31]–[34] and on the impact
of failures on running workloads [35], [36]. The studies on
interconnect networks for HPC systems are mainly focused
on performance, network protocol, hardware reliability, and
congestion control. There is a lack of empirical study on the
efficacy of recovery mechanisms and the impact of recovery
operations on the user workload.
HPC reliability: Achieving exascale performance within the
decade is essential for progress in science and technology
[37]. Exascale computing without resilience is not possible.
Many exascale technical studies [38]–[40] have argued that
the key challenges for scaling to exascale are energy, mem-
ory, concurrency, and resiliency. In [31], [41], the authors
show that faults, errors, and failures are widespread in
supercomputers and that is only going to increase in future
systems.
Network reliability: The interconnection network is one of
the three pillars of an HPC system (the others being the
computing and file system subsystems). Ensuring intercon-
nect reliability is fundamental to computing, as it serves
as the major data-path for the communication between
application processes and file systems. In [9], Dally and
Towels have summarized the existing failure modes for
building resilient networks. The research in interconnect
reliability has mainly focused on building reliable routers
[42], [43], deadlock avoidance [44], [45], data transmission
reliability [46], [47], and congestion control [48], [49]. There
is limited research on the effects of network recovery on
applications (in execution) for massively parallel systems.
Recent techniques, such as Immunet [50] proposes low
cost fault-tolerant switching mechanisms using hardware
reconfiguration techniques, but such techniques generally
limited to certain class of applications (such as MPI [22]
applications) and may not be fit for low-latency PGAS
applications.

This is the first study characterizing the recovery tech-
niques of a fault-tolerant interconnection network of a large-
scale system. This study outlines the effects of network-
related failures and recoveries on system and applications.

9 CONCLUSIONS

Using field-failure data, we studied the efficacy of the
recovery mechanisms of the Gemini interconnect network

deployed on Blue Waters. Our analysis model and character-
ization help to understand the cause of failure of network-
recovery mechanisms and their impact on applications and
the system. We show that the most important factors in
determining whether a recovery will complete successfully
are (1) failures that occur during the recovery, whether they
were caused by the same faults that triggered the recovery
or by faults that occurred independently of it; (2) the type
of the recovery; and (3) the duration of the recovery. Our
analysis suggests that data-driven resiliency mechanisms
can identify critical events that can cause the failure of the
recovery and hence can be useful in detecting the failure
of the recovery in advance. Our future work will focus on
building detectors and predictors of recovery failure so that
appropriate mitigating action at system or application level
can be taken.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Award Number 2015-
02674. This work is partially supported by NSF CNS 13-
14891, Air Force Research Lab FA8750-11-2-0084, an IBM
faculty award, and an unrestricted gift from Infosys Ltd.
This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the National
Science Foundation (awards OCI-0725070 and ACI-1238993)
and the state of Illinois. Blue Waters is a joint effort of the
University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Application. We thank Celso
Mendes, Gregory Bauer, and Jeremy Enos from NCSA for
providing raw data and many insightful conversations. We
thank Larry Kaplan for providing Cray-specific information.

REFERENCES

[1] S. Jha, V. Formicola, Z. Kalbarczyk, C. Di Martino, W. T. Kramer,
and R. K. Iyer, “Analysis of gemini interconnect recovery mecha-
nisms: Methods and observations,” in CUG 2016 Conference, pp. 8–
12, Cray User Group, 2016.

[2] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer,
“Logdiver: a tool for measuring resilience of extreme-scale systems
and applications,” in Proceedings of the 5th Workshop on Fault
Tolerance for HPC at eXtreme Scale, pp. 11–18, ACM, 2015.

[3] “Network resiliency of cray xe systems.” http://docs.cray.com/
books/S-2393-4003//S-2393-4003.pdf, 2013.

[4] D. Jewett, “Integrity s2: A fault-tolerant unix platform,” in Fault-
Tolerant Computing, 1991. FTCS-21. Digest of Papers., Twenty-First
International Symposium, pp. 512–519, IEEE, 1991.

[5] M. Harris and D. Luebke, “Gpgpu: General-purpose computation
on graphics hardware,” in International Conference on Computer
Graphics and Interactive Techniques: ACM SIGGRAPH 2005 Courses:
Los Angeles, California, vol. 2005, 2005.

[6] “http://www.cray.com/Products/Storage/Sonexion/
Specifications.aspx.”

[7] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system
interconnect,” in 2010 18th IEEE Symposium on High Performance
Interconnects, pp. 83–87, IEEE, 2010.

[8] “https://wiki.alcf.anl.gov/parts/images/2/2c/
Gemini-whitepaper.pdf.”

[9] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

[10] “https://www.hypertransport.org/.”
[11] P. Kermani and L. Kleinrock, “Virtual cut-through: A new com-

puter communication switching technique,” Computer Networks
(1976), vol. 3, no. 4, pp. 267–286, 1979.

15

[12] P. Mohapatra, “Wormhole routing techniques for directly con-
nected multicomputer systems,” ACM Computing Surveys (CSUR),
vol. 30, no. 3, pp. 374–410, 1998.

[13] G. Staples, “Torque resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing, p. 8, ACM, 2006.

[14] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The applica-
tion level placement scheduler,” in Cray User Group - CUG, 2008.

[15] C. Di Martino, “One size does not fit all: Clustering supercomputer
failures using a multiple time window approach,” in International
Supercomputing Conference, vol. 7905 of Lecture Notes in Computer
Science, pp. 302–316, Springer Berlin Heidelberg, 2013.

[16] T.-T. Lin and D. Siewiorek, “Error log analysis: statistical modeling
and heuristic trend analysis,” Reliability, IEEE Transactions on,
vol. 39, no. 4, pp. 419–432, 1990.

[17] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish,
“Detecting failures in distributed systems with the falcon spy
network,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pp. 279–294, ACM, 2011.

[18] P. J. Braam, “File systems for clusters from a protocol perspective,”
in Proceedings of the Second Extreme Linux Topics Workshop, Monterey,
CA, 1999.

[19] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox,
“Microreboot-a technique for cheap recovery.,” in OSDI, vol. 4,
pp. 31–44, 2004.

[20] K. S. Trivedi, Probability and statistics with reliability, queuing and
computer science applications. Chichester, UK: John Wiley and Sons
Ltd., 2nd edition ed., 2002.

[21] “Imperative recovery.” https://wiki.hpdd.intel.com/display/
PUB/Imperative+Recovery. Accessed: 2016-10-28.

[22] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the mpi message pass-
ing interface standard,” Parallel computing, vol. 22, no. 6, pp. 789–
828, 1996.

[23] L. V. Kale and S. Krishnan, “Charm++: a portable concurrent object
oriented system based on c++,” in ACM Sigplan Notices, vol. 28,
pp. 91–108, ACM, 1993.

[24] G. Almasi, “Pgas (partitioned global address space) languages,” in
Encyclopedia of Parallel Computing, pp. 1539–1545, Springer, 2011.

[25] “http://charmplusplus.org/applications/.”
[26] G. Zheng, L. Shi, and L. V. Kalé, “Ftc-charm++: an in-memory

checkpoint-based fault tolerant runtime for charm++ and mpi,” in
Cluster Computing, 2004 IEEE International Conference on, pp. 93–
103, IEEE, 2004.

[27] “Amber.” http://ambermd.org/. Accessed: 2016-10-28.
[28] D. Rossetti and S. C. Team, “Gpudirect: Integrating the gpu with

a network interface,” in GPU Technology Conference, 2015.
[29] V. Formicola, et al., “Understanding fault scenarios and impacts

through fault injection experiments in cielo,” Cray User Group,
pp. 8–12, 2017.

[30] “http://www.nersc.gov/users/computational-systems/
edison/.”

[31] C. Di Martino, F. Baccanico, J. Fullop, W. Kramer, Z. Kalbarczyk,
and R. Iyer, “Lessons learned from the analysis of system failures
at petascale: The case of blue waters,” in Proc. of 44th Annual
IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN),
2014.

[32] B. Schroeder and G. Gibson, “A large-scale study of failures
in high-performance computing systems,” Dependable and Secure
Computing, IEEE Transactions on, vol. 7, no. 4, pp. 337–350, 2010.

[33] Y. Liang, A. Sivasubramaniam, J. Moreira, Y. Zhang, R. Sahoo,
and M. Jette, “Filtering failure logs for a bluegene/l prototype,” in
DSN ’05: Proc. of the 2005 Int. Conference on Dependable Systems and
Networks, pp. 476–485, 2005.

[34] A. Oliner and J. Stearley, “What supercomputers say: A study of
five system logs,” Dependable Systems and Networks, 2007. DSN ’07.
37th Annual IEEE/IFIP Int. Conference on, pp. 575–584, June 2007.

[35] C. Di Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field
study of 5,000,000 hpc application runs,” in Dependable Systems
and Networks (DSN), 2015 45th Annual IEEE/IFIP International Con-
ference on, pp. 25–36, IEEE, 2015.

[36] E. Meneses, X. Ni, T. Jones, and D. Maxwell, “Analyzing the
interplay of failures and workload on a leadership-class super-
computer,” computing, vol. 2, no. 3, p. 4, 2015.

[37] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Perfor-
mance Computing Applications, 2009.

[38] J. Dongarra, et al., “The international exascale software project
roadmap,” International Journal of High Performance Computing Ap-
plications, p. 1094342010391989, 2011.

[39] A. Geist and R. Lucas, “Major computer science challenges at
exascale,” International Journal of High Performance Computing Ap-
plications, 2009.

[40] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, et al., “Exascale
computing study: Technology challenges in achieving exascale
systems,” Defense Advanced Research Projects Agency Information
Processing Techniques Office (DARPA IPTO), Tech. Rep, vol. 13, 2008.

[41] F. Cappello, “Fault tolerance in petascale/exascale systems: Cur-
rent knowledge, challenges and research opportunities,” Interna-
tional Journal of High Performance Computing Applications, vol. 23,
no. 3, pp. 212–226, 2009.

[42] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and T. Xan-
thopoulos, “The reliable router: A reliable and high-performance
communication substrate for parallel computers,” in International
Workshop on Parallel Computer Routing and Communication, pp. 241–
255, Springer, 1994.

[43] W. J. Dally and C. L. Seitz, “Torus routing chip,” June 12 1990. US
Patent 4,933,933.

[44] D. H. Linder and J. C. Harden, “An adaptive and fault tolerant
wormhole routing strategy for k-ary n-cubes,” IEEE Transactions
on Computers, vol. 40, no. 1, pp. 2–12, 1991.

[45] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Transactions on
computers, vol. 100, no. 5, pp. 547–553, 1987.

[46] R. E. Blahut, Algebraic codes for data transmission. Cambridge
university press, 2003.

[47] A. A. Chien and J. H. Kim, Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors, vol. 20. ACM, 1992.

[48] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,” Com-
puter Networks and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[49] V. Jacobson, “Congestion avoidance and control,” in ACM SIG-
COMM computer communication review, vol. 18, pp. 314–329, ACM,
1988.

[50] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet:
A cheap and robust fault-tolerant packet routing mechanism,” in
Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, pp. 198–209, IEEE, 2004.

Saurabh Jha is a Ph.D. student in the Department of Computer Sci-
ence at the University of Illinois at Urbana-Champaign. He obtained
his master’s degree in computer science from University of Illinois at
Urbana-Champaign in 2016 and bachelor’s degree in computer science
& engineering from VIT University in 2014.
Valerio Formicola is Research Associate at the University of Illinois at
Urbana-Champaign. He earned his master’s degree in Telecommuni-
cation Engineering in 2008 and a Ph.D. in Information Engineering at
the University of Naples, Italy, in 2014. His research interests are the
reliability and security of large-scale systems.
Catello Di Martino is Research Member of Technical Staff at Nokia Bell
Labs, working on the creation of resilient communication platforms and
networks. Across different institutions, he has contributed to research
projects related to resiliency in the areas of HPC, cloud computing,
SDNs, and Sensor Networks.
Mark Dalton is a system engineer at Cray.
William T. Kramer is the director of deputy project manager for the
sustained-petascale Blue Waters project at Illinois’ National Center for
Supercomputing Applications (NCSA) and the director of the NCSA
@Scale Program Office. He was named one of HPCWire’s ”People to
Watch” in 2005 and 2012 and chaired SC05. At NASA Ames, he put the
world’s first UNIX supercomputer into production.
Zbigniew Kalbarczyk is a Research Professor at the Electrical and
Computer Engineering and the Coordinated Science Laboratory of the
University of Illinois at Urbana-Champaign. Dr. Kalbarczyks research
interests are in the area of design and validation of reliable and secure
computing systems.
Ravishankar K. Iyer is the George and Ann Fisher Distinguished Pro-
fessor of Engineering at the University of Illinois at Urbana-Champaign.
He holds appointments in the Department of Electrical and Computer
Engineering, the Coordinated Science Laboratory (CSL), and the De-
partment of Computer Science, serves as Chief Scientist of the Infor-
mation Trust Institute, and is affiliate faculty of the National Center for
Supercomputing Applications (NCSA).

